单片机电流检测电路图大全(四款模拟电路设计原理图详解)

信号处理电子电路图

343人已加入

描述

单片机电流检测电路图(一)

高精度直流电压比的单片机测量电路设计

本文介绍的测量电路,具有结构简单、价格低廉、精度高、抗干扰能力强等特点。该测量电路和程序已实际应用于压敏电阻的非线性指数α的测试仪表中。这里的α=1/log(V1/V2)。

MAXIMICL7135简介

MAXIMICL7135是CMOS单片4(1/2)位(十进制)双积分型高精度A/D转换器,除基准电压、显示驱动器和时钟之外,还包括双积分式转换器所需的全部有源器件,具有自动校零和自动极性转换功能。MAXIMICL7135的封装形式为DIP28,引脚功能如表1所列。

MAXIMICL7135每个测量周期包括三个阶段:从启动A/D转换开始为“自动校零(A/Z)”阶段,时间长度固定为10001TCL。TCL为外加时钟周期。其后,为对被测电压信号积分(INT)阶段,持续时间10000TCL。最后,为对基准电压反向积分(DE)阶段,持续的时间与被测电压信号大小有关,最大为20001TCL。一个完整的转换周期需要40002个时钟脉冲,如图1所示。

单片机

直流电压比的测量方法及硬件电路

通常,直流电压比的测量方法是将两模拟量V1、V2分别经A/D转换后,再进行浮点除运算。这样做,不仅实现的电路复杂,速度慢,而且两次测量后再进行数据处理将会产生积累误差,影响精度。我们采用1片MAXIMICL7135芯片,经1个测量周期后,就可直接得到V1/V2的值。

根据双积分ADC的原理,调零阶段后,首先对被测模拟信号V1积分(采样阶段),即对积分电容CINT充电,经过时间t1后,有

单片机

单片机

据式(3),若把被测模拟电压V2作为基准电压输入,则可得V1/V2即为采样阶段和测量阶段所需的振荡脉冲个数之比。由图1可知,当被测电压V1积分阶段一开始,BUSY端即输出高电平,并一直维持到积分器过零后的第一个振荡脉冲(在过量程时,其高电平保持到转换周期结束)。所以,只要测出BUSY信号维持为高电平期间振荡脉冲的个数,而N=10000,则可得NX。直流电压比的实用测量电路如图2所示,由单片机AT89C2051、A/D转换器MAXIMICL7135和显示电路(图中未画出)组成。将R/H与P1.0连接,实现程序启动A/D转换。STB与P3.2(INT0)引脚连接,用第一个STB负脉冲作为转换结束信号,并向CPU请求中断。BUSY与P3.3(INT1)引脚连接,使AT89C2051内部定时器T1对时钟信号CLK的计数受BUSY的控制。若单片机的fOSC=12MHz,则ALE引脚输出的2MHz信号经74LS161构成的8分频电路,得到频率为250kHz的信号作为MAXIMICL7135的时钟。本电路测量范围:V1/V2《2(0.0000~1.9999)。

单片机

软件设计

主程序完成初始化、启动A/D转换、数据显示,AT89C2051的定时器T1工作在方式1,对外部事件计数,外中断0工作在边沿触发方式。外中断0的中断服务程序完成转换数据读出、处理工作。图3、图4分别为主程序和中断服务程序流程图,另外,给出初始化程序段。

单片机

单片机电流检测电路图(二)

51单片机的电压电流检测系统

本设计采用AT89C51为主控芯片,外部采用ADC0804作为电压采集芯片,外部电压最高为10V,而ADC0804最高电压为+5V,所以模拟量连接入ADC芯片之前,首先用电阻分压,把待测电压分为原来的一半,这样所检测的电压就用0-10V变成了0-5V,符合ADC芯片的输入要求,在检测电压后,经过单片机处理后,在在原来的电压基础上乘以2则可以恢复以前的待测电压。

电压报警电路则由一路继电器和发光二极管,以及喇叭所组成。当ADC芯片所检测的电压超过一定的限制,则使特定的IO口变成低电平,导通PNP三极管,使继电器导通,发光LED和喇叭行成压降。产生报警。

由ADC芯片采集的电压值,和由电阻所变换计算出的电流值,在LCD上显示。

报警电压由两个按键所设定,当按键一按下则报警值加0.1V,当按键二按下则报警值减掉0.1V。

片机内部随时把采集电压和报警电压进行比较,当采集电压高过报警电压,则启动报警。

整体电路图

单片机

仿真图形

单片机

电压,电流显示电路

单片机

声光报警电路

单片机

按键设置电路

本次设计由于protues中的12864只有不带字库的液晶显示器,操作极为复杂。由于时间问题。软件程序仅仅调试了液晶1602显示器。相信只要有时间12864的显示也一定能够完成。

单片机电流检测电路图(三)

它的主要功能是完成对过电压的瞬时值和峰值的检测、过电压次数的检测、电源输出电压和电流的检测,并通过键盘的操作显示出各个检测值的大小;同时通过485接口和上位机实现通信,在有过电压的时候通过控制电路启动备用电源,实现对电源本身的保护。

软件设计

系统软件主要由主程序、键盘扫描于程序、显示子程序和通信子程序等组成。主程序由初始化、看门狗置位、键盘扫描子程序、中断子程序组成。主程序主要进行分配内存单元、设置串行口等器件的工作方式和参数,为系统正常工作创造条件。在主程序运行的过程中,通过按键可以显示检测的各个量的值;同时在系统过电压和干扰信号产生时,液晶显示屏会显示提示信息,使电源实现“透明”,便于电源的管理。在本系统中,键盘采用的是由P1口组成的3×3行列矩阵式键盘。

为了实现与目前应用较为广泛的MODia)N系列测控系统的连接,本系统选用了控制系统中较为通用的MODBUS协议进行通信。MODBUS协议采用主—从通信方式,它规定把各个报文封装成对应的一帧数据,以帧为单位传输数据。主站发送的报文包括接收者地址,任务、任务数据、校验方式等内容;从站响应信息报文包括从站地址、所执行的任务、执行任务得到的数据、校验方式等内容。MODBUS协议有两种报文组成结构(又称传输模式),分别是ASCII(美国信息交换码)模式和RTU模式。同-MODBUS总线网络上的所有站点设备都必顽使用相同的模式和对应的串口通信参数。本例采用的是RTU报文传送方式。RTU模式的报文字符由8位二进制编码组成,每个字符包含1位起始位、8位数据位和2位停止位(无奇偶校验)。RTU模式的文字符号必须以连续数据流的形式传送,每帧以至少3.5个字节时间的停顿间隔开始传输.同样以至43.5个字符时间的停顿标志传输的结束。通信程序已经发展得比较成熟,具体的框图省去。通信程序软件运行时随串行口,若证实为上位机通信请求,则发应答信号,实现“握手”,然后按上位机要求发送或接收数据。发送时,将本机检测的电压值、电流值向上发送,接收时则将上位机发来的系统设置参数进行差错判断后放人本机原设置单元,然后再由软件根据设置值进行相应处理.

单片机

单片机电流检测电路图(四)

具有较宽共模输入范围的电流检测放大器。MAX44284电流检测放大器集高精度、宽输入共模范围于一体。您可以同时获得高精度、低功耗性能——具备Maxim一贯的简约设计风格。这款器件树立了检流放大器高精度、高灵活性的新标杆,具有优异的性价比,非常适合医疗、消费类电子、移动、通信或电机控制应用——需要高精度、设计简便的任何应用。

单片机

优异的精度

2µV输入失调电压,增益误差仅为0.05%

极低的输入失调温度系数:50nV/°C

-0.1V至+36V宽输入共模范围

低失调漂移和输入噪声

提供关断控制,节省电池电量

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分