光电脉搏检测电路图大全(四款模拟电路设计原理图详解)

光电测量电路

6人已加入

描述

脉搏信号提取原理

根据朗伯比尔(LamberBeer)定律,物质在一定波长处的吸光度和他的浓度成正比。当恒定波长的光照射到人体组织上时,通过人体组织吸收、反射衰减后测量到的光强将在一定程度上反映了被照射部位组织的结构特征。

脉搏主要由人体动脉舒张和收缩产生的,在人体指尖,组织中的动脉成分含量高,而且指尖厚度相对其他人体组织而言比较薄,透过手指后检测到的光强相对较大,因此光电式脉搏传感器的测量部位通常在人体指尖。手指组织可以分成皮肤、肌肉、骨骼等非血液组织和血液组织,其中非血液组织的光吸收量是恒定的,而在血液中,静脉血的搏动相对于动脉血是十分微弱的,可以忽略,因此可以认为光透过手指后的变化仅由动脉血的充盈而引起的,那么在恒定波长的光源的照射下,通过检测透过手指的光强将可以间接测量到人体的脉搏信号。

光电

从光源发出的光除被手指组织吸收以外,一部分由血液漫反射返回。其余部分透射出来。光电式脉搏传感器按光的接收方式可分为透射式和反射式两种。透射式的光源与光敏接收器件的距离相等并且对称布置,从光源发出的光穿过皮肤进入深层组织,除被皮肤、色素、指甲、血液等吸收外,一部分由血液漫反射回,其余部分则透射出来,这种方法可较好地指示心律的时间关系,并可用于脉搏提取,但不能精确测量出血液容积量的变化;反射式的测量原理与透射式的基本相同,所不同的是测头当中的发射光源和光敏器件位于同一侧,接收的是漫反射回来的光,此信号可精确地测得血管内容积变化,本系统采用了透射式来提取脉搏信号。

光电

系统硬件设计

显示人体脉搏波形的检测系统如图1所示:

光电

光电脉搏检测电路图(一)

光电检测电路

单片机P2.0、P2.1和P2.2三个端口分别通过开关三极管9014驱动三种不同波长的发光二极管周期性点亮。使用开关三极管可以保证发光二极管发光强度稳定。

光敏二极管使用时要反向接入电路中,即正极接电源负极,见图,根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。不同波长的光在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;波长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流;波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过PN结的光电流应是三部分光电流之和。

运放CA3140,输入偏置电流仅为10^2nA,可作为光电流放大器,利用放大器反向输入端的虚地特性,可在输出端得到与光敏二极管中的光电流成正比的光电压。如图3-11所示电路,由于引入电压并联负反馈,所以具有输出电阻低,输入电阻也低的特点。输出电阻低,使输出电压接近理想电压源,输入电阻低,使光电流流入放大电路中为恒定值。为了减少输出的非线性,光敏二极管的工作电压应大于5V,可通过电位器调节工作电压,旁边加一个旁路电容,滤出电源纹波的影响。为了减少光敏区的暗电流,光敏二极管加保护环结构,利用环极将器件表面漏电流旁路而使光敏区漏电流减少。用示波器观察输出端波形时,噪声信号比较多,用金属铝片做成一个方盒将反馈电阻屏蔽后,波形中噪声大大减少。

光电

放大电路

光电

带通滤波电路

由于人体脉搏信号是准周期信号,频率范围为0.1Hz-50Hz,主要频率分量一般在0.1Hz-40Hz之间,系统的频响范围取0.1—40Hz即可,故放大电路中的高低截止频率按此频率设计。先由高精度运放ICL7650组成的前置放大器将脉搏波信号放大30倍,再经过截止频率为40Hz的二阶低通滤波器(如图)后,脉搏波信号含有伏特级的直流信号和毫伏级的交流信号。

光电

在图3-7中,截止频率f1/2πRC0=,取C=0.1uF,则RfC0=1/2π,将C=0.1uF,f0=40Hz代入f1/2πRC0=,得R=40K欧。电压放大倍数Au=1+Rf/R1,等效品质因数Q=1/(3-Au)。Q=1,滤波效果较好,因此Rf=R1,为使集成运放两个输入端对地的电阻平衡,应取R=R=K?f1601。

50Hz陷波电路

由于传感器的检测信号十分微弱,比外界某些干扰信号可能还要小得多,本系统中工频干扰是一个主要的噪声源,加在光敏管正极的直流负电压中所含50Hz交流成分直接通过光电检测电路进入系统中,放大后与脉搏信号幅度相当,甚至可能湮没脉搏信号,必须在A/D转换的前端,抑制工频信的干扰。为此采用带通滤波器和相加器组成的有源带阻滤波器滤除50Hz电信号的干扰。同样这类陷波电路元器件精度要求严,否则直接影响陷波频率Q值,如图所示陷波电路中选用性能较好的运放OP-07。

光电

在图中,陷波频率f0=50Hz,取C=0.22uF,则R=1/2fC=14.5K?0π,为使陷波效果较好,等效品质因数Q取10。2(2)1uAQ?=Au=1+Rf/R1,因而取R=19K欧,R=20K欧。

光电脉搏检测电路图(二)

1、血氧心率信号采集及预处理电路

对有血氧探头检测的信号,先经过脉冲控制电路电路将其分成两路信号,然后经过放大电路,将微弱的血氧信号高保真放大,最后经过A/D转换后进行后期的处理。

1.1、脉冲控制电路

脉冲控制电路的基本设计思路是在一个心动周期时间内,控制660nm的红光和940nm的红外两种波长光周期性发光。

光电

具体电路由一个时基电路555定时器构成的多谐振荡器,由74LS04反向器构成下降沿触发器,由高电平触发的电子开关4066做为控制部分。时基电路555定时器构成的多谐振荡器,555定时的振荡频率:

T=TPH+TPL=0.7(R1+2R2)C(1)

T为555定时的振荡周期,TPH为充电时间,TPL为放电时间。根据这个公式算得脉冲控制电路的振荡频率为0.01s,模拟开关4066将由血氧探头测得的两路光(红光和红外),分成两路,分别进入放大电路。

血氧探头内部电路图如图2所示:

光电

1.2、放大电路设计

放大电路由输入跟随,OP07放大器构成,在血氧信号的采集和处理过程中,放大电路设计是个电路设计最关键的部位,因为它不仅可以提取有用的信号,还同时可以将干扰信号降低到最低水平。由血氧探头测得的血氧信号极其微弱,所以,考虑将放大电路放在探头输出端与4066控制器之间。输入跟随电路,就是输出电压等于输入电压,就是说,压跟随器的电压放大倍数恒小于且接近1。

光电

OP07是一种低噪声,非斩波稳零的双极性运算放大器,它具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,OP07同时输入偏置电流低和开环增益高的特点,这是OP07十分适合于高增益和放大传感器的微弱信号等方面,这满足血氧心率检测放大电路的要求,如图为OP07构成的同向放大电路,电路连接很简单,放大倍数有1脚和6脚之间的电阻决定。公式为:

G=AU(1)

光电

AU为电压放大倍数,因此放大电路采用OP07放大电路作为血氧测量放大电路。电阻R9用来调节放大倍数,为了防止失真,取放大倍数为10倍左右,电阻R9阻值约为10kΩ。电源输入端接0.01μF接地,用于屏蔽来自电源的干扰。前级用高精度运算放大器OPA4277作为输入跟随,用于提高输入阻抗、获取更多的心电信号。

光电

光电脉搏检测电路图(三)

光电脉搏测量原理如图1所示,从光源发出的红外光一部分被手指组织吸收,一部分透射出来;红外接收管在光源的对称位置,检测到的透射光,反映出心律跳动情况。由于手指动脉在血液循环过程中呈周期性的脉动变化,红外接收三极管输出信号也是周期性脉动的变化。

光电

系统硬件框图如图2所示,由光电传感器、信号处理、单片机AT89S51、数码显示、电源等部分组成。当手指放在红外线发射二极管和接收三极管中间时,随着心脏的跳动,血管中血液的流量将发生变化。由于手指放在光的传递路径中,血管中血液饱和程度的变化将引起光的强度发生变化,因此和心跳的节拍相对应,红外接收三极管的电流也跟着改变,并输出脉冲信号。该信号经放大、滤波、整形后输出,单片机电路对输入的脉冲信号进行计算处理后把结果送到LCD1602显示。

信号采集电路

图3是脉搏信号的采集电路,U0是红外发射和接收装置,由于红外发射二极管中的电流越大,红外光发射强度就越大,所以对R1阻值的选取要求较高。R1选择270Ω是基于红外接收三极管感应红外光灵敏度考虑的。当手指离开传感器或检测到较强的干扰光线时,输入端的直流电压会出现很大变化,为了使它不致泄漏到后级,用C1、C2串联组成的双极性耦合电容把它隔断。该传感器输出信号的频率很低,当脉搏为50次/min时,只有0.78Hz,200次/min时也只有3.33Hz,因此信号首先经R2、C3滤波以滤除高频干扰,再由耦合电容C1、C2加到线性放大输入端。集成运放741,R5、C4构成低通滤波器以进一步滤除残留的干扰,其截止频率为:

光电

整形电路

波形整形电路如图4所示,U2是一个电压比较器,C1、R4构成一个微分器,U3和C2、R5将正、负相间的尖脉冲加到单稳态多谐振荡器U3的反向输入端,不会造成很大的触发误差。当有输入信号时,U3在比较器输入信号的下降沿输出高电平,使C2通过R5充电。大约持续20ms之后,因C2充电电流减小而使U3同相输入端的电位降低到低于反相输入端的电位(尖脉冲已过去很久),于是U3改变状态并再次输出低电平。该脉冲是与脉搏同步的,并由红色发光二极管LED的闪亮指示出来。同时,该脉冲电平通过R6送到单片机/INTO脚,由单片机控制心率的计算和显示。

光电

单片机处理及电路

系统采用了AT89S51单片机作为核心元件,构成的最小单片机系统如图5所示,系统时钟采用外部振荡电路,由12MHz晶振和2个30pF电容构成;系统通过S键进行复位。每次脉冲到达时触发单片机产生中断并进行计时,其对1min内的脉冲数进行累加即为所测脉搏。LCD1602A第1、2脚接驱动电源,第3脚VL为液晶的对比度调节;通过在VCC和GND之间接一个10kΩ多圈可调电阻,中间抽头接VL,可实现液晶对比度的调节;液晶的控制线RS、R/W、E分别接单片机的P2.5、P2.6、P2.7;数据口接在单片机的P0口;BL+、BL-为液晶背光电源。

光电

光电脉搏检测电路图(四)

脉搏检测电路应用运算放大器构成同相交流放大电路,对直流信号无放大,由于反馈电容的存在可以滤除50Hz的工频干扰,使得20Hz以内低频信号顺利通过,并进行多级放大,再经过施密特触发器整形

光电

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分