电子说
随着时代的发展,科技的进步,发光二极管(Light Emitting Diode,LED)在生活生产中的各个领域得到了广泛发展,比如普通照明、医疗、交通等。因为LED是电流型器件,LED发出的光品质是由流经LED的电流大小和波动情况决定的,所以发展LED照明的关键在于其驱动器的创新与设计[1-2]。
如今LED驱动电源技术日益成熟,总体可分为单级式和两级式。单级式LED驱动电源拓扑包括Buck、Buck-boost、Fly-back等,结构简单,易于控制,成本较低,但是其功率因数较低,输出电流纹波较大,影响LED的发光品质。两级式LED驱动电源拓扑分为前级功率因数校正(Power Factor Correction,PFC)模块和后级DC-DC模块。结构较单级式更为复杂,控制策略也更为繁琐,相对成本就更高,而其优点是功率因数会比较高,且输出电流纹波比较低,在交流供电场合,更能满足IEC 61000-3-2的谐波要求[3-8]。
文献[9]提出了一种基于二次型Buck无频闪无变压器的LED驱动电源,具有较高的功率因数,降低了输出纹波。但是其输入电流存在过零死区的问题,影响其总谐波失真(Total Harmonic Distortion,THD)。
本文提出一种新型的的基于Buck-boost级联二次型Buck拓扑的LED驱动电源,在二次型Buck拓扑的基础上,级联了一个Buck-boost变换器,消除了输入电流过零死区,改善了其THD,进一步提高了电源的功率因数。同时,采用两级式级联结构,降低了二极管的电压应力,使开关管的占空比工作在更合理的区域。
1 主电路拓扑的工作原理
如图1所示为基于Buck-boost级联二次型Buck拓扑的LED驱动电源的主电路拓扑图。此拓扑由一个Buck-boost拓扑和一个二次型Buck拓扑级联而成,共用一个开关管Q。Buck-boost拓扑包括开关管Q、电感L1、电容C1、二极管D2和二极管D3,二次型Buck拓扑包括开关管Q、二极管D4、D5、D6、D7、电感L2、L3和电容C2、Co。当电感L1和L2工作在电感断续模式(Discontinuous Conduction mode,DCM)下,电路自动实现PFC。为了使电源效率更高,使电感L3工作在临界连续模式(Critical Conduction Mode,CRM)下。
为了简化分析,在本文中,假设:
(1)所有的开关管、二极管、电感和电容均为理想元件。
(2)开关频率fS远大于电网频率fL。
(3)在开关周期内,电容电压为恒定值。
经过分析,变换器可分为开关管Q导通和关断的两个主要工作模态,变换器的主要工作模态等效电路如图2所示,驱动电源主要波形如图3所示。
(2)关断模态:如图2(b)所示,当开关管关断时,二极管D3、D5、D7导通,电感L1上的电流通过二极管D3续流,并向电容C1放电,电感L2上的电流通过二极管D4续流,并向电容C2放电,电感L3上的电流通过二极管D7续流,并向电容Co和负载放电。即电感电流峰值与续流时间的关系分别为:
其中,
由于电感L3工作在CRM模式下,电感电流
2 LED驱动电源工作特性分析
2.1 占空比D的分析
经过分析可得,理想情况下,驱动电源的电压传输比为:
根据式(11)作图4可得,与传统的二次型Buck拓扑相比,在相同的电压传输比的情况下,本文提出的电路拓扑能在更为理想的占空比的条件下工作,提高了电源稳定性和电源效率。
2.2 电容C1、C2的特性分析
2.3 电感L1、L2、L3的工作特性分析
由于电感L3工作在CRM模式下,根据式(10)和式(16)可得:
取电感L2=400 μH,经计算分析,电感L1,L2的取值满足式(22)和式(23)。
3 实验结果分析
为了验证理论分析的正确性,设计了功率为32 W的LED驱动电源,输入电压为220 V,频率为50 Hz的交流电,输出为电流1.6 A,电压20 V的直流电,取开关频率为30 kHz,电感比值
由图6可知,输入电流iin与输入电压uin基本保持同相位,且消除了原二次型Buck变换器输入电流存在过零死区的问题,极大的改善了输入电流的THD,PF值高达97.7%。输出电流Io基本为一直线,极大地降低了纹波,消除了频闪。
根据变换器的实验参数,由式(15)和式(16)可得
由图8分析可得,电感L1、L2工作在DCM模式下,电感L3工作在CRM模式下,也与理论分析保持一致。
4 结语
本文提出了一种新型的基于Buck-boost级联二次型Buck拓扑的LED驱动电源。共用了一个开关管,控制简单易行。消除了原二次型Buck拓扑结构的输入电流死区问题,进一步提高了功率因数,改善了输入电流THD。实验表明,输出电流纹波低,能实现恒流输出,满足LED驱动电源的要求。
全部0条评论
快来发表一下你的评论吧 !