关于二叉树一些数据结构和算法相关的题目

描述

最近总结了一些数据结构和算法相关的题目,这是第一篇文章,关于二叉树的。先上二叉树的数据结构:

class TreeNode{    int val;    //左孩子    TreeNode left;    //右孩子    TreeNode right;}

二叉树的题目普遍可以用递归和迭代的方式来解

1. 求二叉树的最大深度

int maxDeath(TreeNode node){    if(node==null){        return 0;    }    int left = maxDeath(node.left);    int right = maxDeath(node.right);    return Math.max(left,right) + 1;}

2. 求二叉树的最小深度

int getMinDepth(TreeNode root){        if(root == null){            return 0;        }        return getMin(root);    }    int getMin(TreeNode root){        if(root == null){            return Integer.MAX_VALUE;        }        if(root.left == null&&root.right == null){            return 1;        }        return Math.min(getMin(root.left),getMin(root.right)) + 1;    }

3. 求二叉树中节点的个数

int numOfTreeNode(TreeNode root){        if(root == null){            return 0;        }        int left = numOfTreeNode(root.left);        int right = numOfTreeNode(root.right);        return left + right + 1;    }

4. 求二叉树中叶子节点的个数

int numsOfNoChildNode(TreeNode root){        if(root == null){            return 0;        }        if(root.left==null&&root.right==null){            return 1;        }        return numsOfNodeTreeNode(root.left)+numsOfNodeTreeNode(root.right);    }

5. 求二叉树中第k层节点的个数

int numsOfkLevelTreeNode(TreeNode root,int k){            if(root == null||k<1){                return 0;            }            if(k==1){                return 1;            }            int numsLeft = numsOfkLevelTreeNode(root.left,k-1);            int numsRight = numsOfkLevelTreeNode(root.right,k-1);            return numsLeft + numsRight;        }

6. 判断二叉树是否是平衡二叉树

boolean isBalanced(TreeNode node){        return maxDeath2(node)!=-1;    }    int maxDeath2(TreeNode node){        if(node == null){            return 0;        }        int left = maxDeath2(node.left);        int right = maxDeath2(node.right);        if(left==-1||right==-1||Math.abs(left-right)>1){            return -1;        }        return Math.max(left, right) + 1;    }

7.判断二叉树是否是完全二叉树

什么是完全二叉树呢?参见

boolean isCompleteTreeNode(TreeNode root){        if(root == null){            return false;        }        Queue queue = new LinkedList();        queue.add(root);        boolean result = true;        boolean hasNoChild = false;        while(!queue.isEmpty()){            TreeNode current = queue.remove();            if(hasNoChild){                if(current.left!=null||current.right!=null){                    result = false;                    break;                }            }else{                if(current.left!=null&¤t.right!=null){                    queue.add(current.left);                    queue.add(current.right);                }else if(current.left!=null&¤t.right==null){                    queue.add(current.left);                    hasNoChild = true;                }else if(current.left==null&¤t.right!=null){                    result = false;                    break;                }else{                    hasNoChild = true;                }            }        }        return result;    }

8. 两个二叉树是否完全相同

boolean isSameTreeNode(TreeNode t1,TreeNode t2){        if(t1==null&&t2==null){            return true;        }        else if(t1==null||t2==null){            return false;        }        if(t1.val != t2.val){            return false;        }        boolean left = isSameTreeNode(t1.left,t2.left);        boolean right = isSameTreeNode(t1.right,t2.right);        return left&&right;    }

9. 两个二叉树是否互为镜像

boolean isMirror(TreeNode t1,TreeNode t2){        if(t1==null&&t2==null){            return true;        }        if(t1==null||t2==null){            return false;        }        if(t1.val != t2.val){            return false;        }        return isMirror(t1.left,t2.right)&&isMirror(t1.right,t2.left);    }

10. 翻转二叉树or镜像二叉树

TreeNode mirrorTreeNode(TreeNode root){        if(root == null){            return null;        }        TreeNode left = mirrorTreeNode(root.left);        TreeNode right = mirrorTreeNode(root.right);        root.left = right;        root.right = left;        return root;    }

11. 求两个二叉树的最低公共祖先节点

TreeNode getLastCommonParent(TreeNode root,TreeNode t1,TreeNode t2){        if(findNode(root.left,t1)){            if(findNode(root.right,t2)){                return root;            }else{                return getLastCommonParent(root.left,t1,t2);            }        }else{            if(findNode(root.left,t2)){                return root;            }else{                return getLastCommonParent(root.right,t1,t2)            }        }    }    // 查找节点node是否在当前 二叉树中    boolean findNode(TreeNode root,TreeNode node){        if(root == null || node == null){            return false;        }        if(root == node){            return true;        }        boolean found = findNode(root.left,node);        if(!found){            found = findNode(root.right,node);        }        return found;    }

12. 二叉树的前序遍历

迭代解法

ArrayList preOrder(TreeNode root){        Stack stack = new Stack();        ArrayList list = new ArrayList();        if(root == null){            return list;        }        stack.push(root);        while(!stack.empty()){            TreeNode node = stack.pop();            list.add(node.val);            if(node.right!=null){                stack.push(node.right);            }            if(node.left != null){                stack.push(node.left);            }        }        return list;    }

递归解法

ArrayList preOrderReverse(TreeNode root){        ArrayList result = new ArrayList();        preOrder2(root,result);        return result;    }    void preOrder2(TreeNode root,ArrayList result){        if(root == null){            return;        }        result.add(root.val);        preOrder2(root.left,result);        preOrder2(root.right,result);    }

13. 二叉树的中序遍历

ArrayList inOrder(TreeNode root){        ArrayList list = new ArrayList<();        Stack stack = new Stack();        TreeNode current = root;        while(current != null|| !stack.empty()){            while(current != null){                stack.add(current);                current = current.left;            }            current = stack.peek();            stack.pop();            list.add(current.val);            current = current.right;        }        return list;    }

14.二叉树的后序遍历

ArrayList postOrder(TreeNode root){        ArrayList list = new ArrayList();        if(root == null){            return list;        }        list.addAll(postOrder(root.left));        list.addAll(postOrder(root.right));        list.add(root.val);        return list;    }

15.前序遍历和后序遍历构造二叉树

TreeNode buildTreeNode(int[] preorder,int[] inorder){        if(preorder.length!=inorder.length){            return null;        }        return myBuildTree(inorder,0,inorder.length-1,preorder,0,preorder.length-1);    }    TreeNode myBuildTree(int[] inorder,int instart,int inend,int[] preorder,int prestart,int preend){        if(instart>inend){            return null;        }        TreeNode root = new TreeNode(preorder[prestart]);        int position = findPosition(inorder,instart,inend,preorder[start]);        root.left = myBuildTree(inorder,instart,position-1,preorder,prestart+1,prestart+position-instart);        root.right = myBuildTree(inorder,position+1,inend,preorder,position-inend+preend+1,preend);        return root;    }    int findPosition(int[] arr,int start,int end,int key){        int i;        for(i = start;i<=end;i++){            if(arr[i] == key){                return i;            }        }        return -1;    }

16.在二叉树中插入节点

TreeNode insertNode(TreeNode root,TreeNode node){        if(root == node){            return node;        }        TreeNode tmp = new TreeNode();        tmp = root;        TreeNode last = null;        while(tmp!=null){            last = tmp;            if(tmp.val>node.val){                tmp = tmp.left;            }else{                tmp = tmp.right;            }        }        if(last!=null){            if(last.val>node.val){                last.left = node;            }else{                last.right = node;            }        }        return root;    }

17.输入一个二叉树和一个整数,打印出二叉树中节点值的和等于输入整数所有的路径

void findPath(TreeNode r,int i){        if(root == null){            return;        }        Stack stack = new Stack();        int currentSum = 0;        findPath(r, i, stack, currentSum);    }    void findPath(TreeNode r,int i,Stack stack,int currentSum){        currentSum+=r.val;        stack.push(r.val);        if(r.left==null&&r.right==null){            if(currentSum==i){                for(int path:stack){                    System.out.println(path);                }            }        }        if(r.left!=null){            findPath(r.left, i, stack, currentSum);        }        if(r.right!=null){            findPath(r.right, i, stack, currentSum);        }        stack.pop();    }

18.二叉树的搜索区间

给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点。找到树中所有值在 k1 到 k2 范围内的节点。即打印所有x (k1 <= x <= k2) 其中 x 是二叉查找树的中的节点值。返回所有升序的节点值。

ArrayList result;    ArrayList searchRange(TreeNode root,int k1,int k2){        result = new ArrayList();        searchHelper(root,k1,k2);        return result;    }    void searchHelper(TreeNode root,int k1,int k2){        if(root == null){            return;        }        if(root.val>k1){            searchHelper(root.left,k1,k2);        }        if(root.val>=k1&&root.val<=k2){            result.add(root.val);        }        if(root.val

19.二叉树的层次遍历

ArrayList> levelOrder(TreeNode root){        ArrayList> result = new ArrayList>();        if(root == null){            return result;        }        Queue queue = new LinkedList();        queue.offer(root);        while(!queue.isEmpty()){            int size = queue.size();            ArrayList< level = new ArrayList():            for(int i = 0;i < size ;i++){                TreeNode node = queue.poll();                level.add(node.val);                if(node.left != null){                    queue.offer(node.left);                }                if(node.right != null){                    queue.offer(node.right);                }            }            result.add(Level);        }        return result;    }

20.二叉树内两个节点的最长距离

二叉树中两个节点的最长距离可能有三种情况:1.左子树的最大深度+右子树的最大深度为二叉树的最长距离2.左子树中的最长距离即为二叉树的最长距离3.右子树种的最长距离即为二叉树的最长距离因此,递归求解即可

private static class Result{      int maxDistance;      int maxDepth;      public Result() {      }      public Result(int maxDistance, int maxDepth) {          this.maxDistance = maxDistance;          this.maxDepth = maxDepth;      }  }      int getMaxDistance(TreeNode root){      return getMaxDistanceResult(root).maxDistance;    }    Result getMaxDistanceResult(TreeNode root){        if(root == null){            Result empty = new Result(0,-1);            return empty;        }        Result lmd = getMaxDistanceResult(root.left);        Result rmd = getMaxDistanceResult(root.right);        Result result = new Result();        result.maxDepth = Math.max(lmd.maxDepth,rmd.maxDepth) + 1;        result.maxDistance = Math.max(lmd.maxDepth + rmd.maxDepth,Math.max(lmd.maxDistance,rmd.maxDistance));        return result;    }

21.不同的二叉树

给出 n,问由 1…n 为节点组成的不同的二叉查找树有多少种?

int numTrees(int n ){        int[] counts = new int[n+2];        counts[0] = 1;        counts[1] = 1;        for(int i = 2;i<=n;i++){            for(int j = 0;j

22.判断二叉树是否是合法的二叉查找树(BST)

一棵BST定义为:节点的左子树中的值要严格小于该节点的值。节点的右子树中的值要严格大于该节点的值。左右子树也必须是二叉查找树。一个节点的树也是二叉查找树。

public int lastVal = Integer.MAX_VALUE;    public boolean firstNode = true;    public boolean isValidBST(TreeNode root) {        // write your code here        if(root==null){            return true;        }        if(!isValidBST(root.left)){            return false;        }        if(!firstNode&&lastVal >= root.val){            return false;        }        firstNode = false;        lastVal = root.val;        if (!isValidBST(root.right)) {            return false;        }        return true;    }

深刻的理解这些题的解法思路,在面试中的二叉树题目就应该没有什么问题

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分