光纤设备
光纤传输相比电缆传输和无线传输而言有众多优势。光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。这篇教程将为您详细介绍光纤传输中的光损耗。
光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。
本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。
光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。
光的散射是光纤损耗的另一个重要原因。光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。
本征光纤损耗,包括光的吸收和散射,只是光纤损耗的一方面原因。非本征光纤损耗是光纤损耗的另一方面重要原因,通常是由光纤的不当处理引起的。非本征光纤损耗主要有两种类型:弯曲损耗和对接损耗。
弯曲损耗是光纤处理不当而引起的常见光纤损耗问题。从字面上理解,弯曲损耗即光纤轴弯曲所引起的损耗。弯曲损耗有两种基本类型,一种是微弯损耗,另一种是宏弯损耗(如上图所示)。其中,宏弯损耗是指光纤的弯曲程度比较大(超过2毫米的曲率半径)。要减少光纤的弯曲损耗,应注意以下几方面的内容:
光纤接续是非本征光纤损耗的另一个主要原因。在光纤网络中,光纤之间的互相连接是必然的。接续引起的光纤损耗不可避免,但可以通过适当的处理减小到最小。采用光纤熔接或使用高质量的光纤连接器可有效降低因光纤接续所产生的损耗。
光纤芯轴偏离轴线;制造缺陷;光纤铺设过程中的机械限制;环境因素如温度、湿度或压力的变化。
上图显示了光纤损耗的几种主要原因。要减少本征光纤损耗,选择适当的光纤和光学元件是必要的;而要最大程度地减少非本征光纤损耗,正确的光纤处理和相应的技能就显得尤为重要。
光纤损耗大致可分为光纤具有的固有损耗以及光纤制成后由使用条件造成的附加损 耗。具体细分如下: 光纤损耗可分为固有损耗和附加损耗,固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗,附加损耗则包括微弯损耗、弯曲损耗和接续损耗。
其中,附加损耗是在光纤的铺设过程中人为造成的。在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。光纤微小弯曲、挤压、拉伸受力也会引起损耗。这些都是光纤使用条件引起的损耗。究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。附加损耗是可以尽量避免的。下面,我们只讨论光纤的固有损耗。 固有损耗中,散射损耗和吸收损耗是由光纤材料本身的特性决定的,在不同的工作波长下引起的固有损耗也不同。搞清楚产生损耗的机理,定量地分析各种因素引起的损耗的大小,对于研制低损耗光纤合理使用光纤有着极其重要的意义
方法/步骤
1、材料的吸收损耗
制造光纤的材料能够吸收光能。光纤材料中的粒子吸收光能以后,产生振动、发热,而将能量散失掉,这样就产生了吸收损耗。在光纤中,当某一能级的电子受到与该能级差相对应的波长的光照射时,则位于低能级轨道上的电子将跃迁到能级高的轨道上。这一电子吸收了光能,就产生了光的吸收损耗
2、散射损耗
在黑夜里,用手电筒向空中照射,可以看到一束光柱。人们也曾看到过夜空中探照灯发出粗大光柱。 那么,为什么我们会看见这些光柱呢?这是因为有许多烟雾、灰尘等微小颗粒浮游于大气之中,光照射在这些颗粒上,产生了散射,就射向了四面八方。这个现象是由瑞利最先发现的,所以人们把这种散射命名为“瑞利散射”。
散射是怎样产生的呢?原来组成物质的分子、原子、电子等微小粒子是以某些固有频率进行振动的,并能释放出波长与该振动频率相应的光。粒子的振动频率由粒子的大小来决定。粒子越大,振动频率越低,释放出的光的波长越长;粒子越小,振动频率越高,释放出的光的波长越短。这种振动频率称做粒子的固有振动频率。但是这种振动并不是自行产生,它需要一定的能量。一旦粒子受到具有一定波长的光照射,而照射光的频率与该粒子固有振动频率相同,就会引起共振。粒子内的电子便以该振动频率开始振动,结果是该粒子向四面八方散射出光,入射光的能量被吸收而转化为粒子的能量,粒子又将能量重新以光能的形式射出去。因此,对于在外部观察的人来说,看到的好像是光撞到粒子以后,向四面八方飞散出去了。
光纤内也有瑞利散射,由此而产生的光损耗就称为瑞利散射损耗。鉴于目前的光纤制造工艺水平,可以说瑞利散射损耗是无法避免的。但是,由于瑞利散射损耗的大小与光波长的4次方成反比,所以光纤工作在长波长区时,瑞利散射损耗的影响可以大大减小
3、先天不足,爱莫能助
光纤结构不完善,如由光纤中有气泡、杂质,或者粗细不均匀,特别是芯-包层交界面不平滑等,光线传到这些地方时,就会有一部分光散射到各个方向,造成损耗。这种损耗是可以想办法克服的,那就是要改善光纤制造的工艺。 散射使光射向四面八方,其中有一部分散射光沿着与光纤传播相反的方向反射回来,在光纤的入射端可接收到这部分散射光。光的散射使得一部分光能受到损失,这是人们所不希望的。但是,这种现象也可以为我们所利用,因为如果我们在发送端对接收到的这部分光的强弱进行分析,可以检查出这根光纤的断点、缺陷和损耗大小。这样,通过人的聪明才智,就把坏事变成了好事。
光纤的损耗近年来,光纤通信在许多领域得到了广泛的应用。实现光纤通信,一个重要的问题是尽可能地降低光纤的损耗。所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。光纤损耗的高低直接影响传输距离或中继站间隔距离的远近,因此,了解并降低光纤的损耗对光纤通信有着重大的现实意义
4、光纤的散射损耗
光纤内部的散射,会减小传输的功率,产生损耗。散射中最重要的是瑞利散射,它是由光纤材料内部的密度和成份变化而引起的。
光纤材料在加热过程中,由于热骚动,使原子得到的压缩性不均匀,使物质的密度不均匀,进而使折射率不均匀。这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。另外,光纤中含有的氧化物浓度不均匀以及掺杂不均匀也会引起散射,产生损耗
全部0条评论
快来发表一下你的评论吧 !