OpenCV中的模板匹配
OpenCV中的模板匹配是支持基于NCC相似度查找的,但是不是很好用,一个主要的原因是查找最大阈值,只能匹配一个,自己比对阈值,又导致无法正确设定阈值范围,所以问题很多。于是我重新写了纯Python版本的NCC图像模板匹配的代码实现了一个Python版本的,简单易用,支持多尺度,跟多进程并行!
主要思想
主要是基于NCC实现的像素相似度计算,这个OpenCV官方的模板匹配也有这中方式像素相似度计算支持,它的公式描述如下:
就是参照这个公式,然后基于OpenCV提供的积分图计算函数,实现了NCC相似度比较计算,值在0~1之间,1表示完全相似,0表示完全不相似。
代码实现
我把整个部分搞成了一个类,调用的方法主要是run_match,就可以直接运行,完成模板匹配。大体的功能跟OpenCV实现的模板匹配功能比较相似,改进的地方就是比较方便的实现多个对象匹配的直接输出Box框。该类完整的代码实现如下:
import cv2 as cv import numpy as np import time import concurrent.futures class NCCTemplateMatch: def __init__(self, ref_imgs, target_imgs, scores, tpl_sums, tpl_sqr_sums, target_sums, target_sqr_sums): self.ref_imgs = ref_imgs self.target_imgs = target_imgs self.scores = scores self.tpls_sums = tpl_sums self.tpls_sqsums = tpl_sqr_sums self.target_sums = target_sums self.target_sqsums = target_sqr_sums self.nms_boxes = [] def run_match(self): num_ps = min(6, len(self.ref_imgs)) # print("num_ps: ", num_ps) start = time.perf_counter() with concurrent.futures.ProcessPoolExecutor(num_ps) as executor: matched = executor.map(self.ncc_run, self.ref_imgs, self.target_imgs, self.tpls_sums, self.tpls_sqsums, self.target_sums, self.target_sqsums, self.scores) self.nms_boxes = list(matched) end = time.perf_counter() print(f'Finished in {round(end-start, 2)} seconds') def ncc_run(self, tpl_gray, target_gray, tpl_sum, tpl_sqsum, target_sum, target_sqsum, score): print("run once~~~~") th, tw = tpl_gray.shape min_step = max(1, min(th // 16, tw // 16)) h, w = target_gray.shape sr = 1 / (th * tw) t_s1 = tpl_sum[th, tw] t_s1_2 = t_s1 * t_s1 * sr t_s1_1 = t_s1 * sr t_s2 = tpl_sqsum[th, tw] sum_t = np.sqrt(t_s2 - t_s1_2) row = 0 boxes = [] confidences = [] while row < (h - th+1): col = 0 while col < (w - tw+1): s1 = self.get_block_sum(target_sum, col, row, col + tw, row + th) s2 = self.get_block_sum(target_sqsum, col, row, col + tw, row + th) sum1 = t_s1_1 * s1 ss_sqr = s2 - s1 * s1 * sr if ss_sqr < 0: # fix issue, 精度问题 ss_sqr = 0.0 sum2 = sum_t * np.sqrt(ss_sqr) sum3 = np.sum(np.multiply(tpl_gray, target_gray[row:row + th, col:col + tw])) if sum2 == 0.0: ncc = 0.0 else: ncc = (sum3 - sum1) / sum2 if ncc > score: boxes.append([col, row, tw, th]) confidences.append(float(ncc)) col += tw//2 else: col += min_step row += min_step # NMS Process nms_indices = cv.dnn.NMSBoxes(boxes, confidences, 0.5, 0.5) det_boxes = [] print(nms_indices) for i in range(len(nms_indices)): rect_box = boxes[nms_indices[i]] det_boxes.append(rect_box) return det_boxes def get_block_sum(self, integal_img, x1, y1, x2, y2): t1 = integal_img[y1, x1] t2 = integal_img[y1, x2] t3 = integal_img[y2, x1] t4 = integal_img[y2, x2] s = t4 - t2 - t3 + t1 return s相关的测试与调用代码如下:
print("test ncc......") tpl_image = cv.imread("D:/images/llk_tpl.png") target_image = cv.imread("D:/images/llk.jpg") tpl_gray = cv.cvtColor(tpl_image, cv.COLOR_BGR2GRAY) target_gray = cv.cvtColor(target_image, cv.COLOR_BGR2GRAY) tpl_gray = np.float32(tpl_gray / 255.0) target_gray = np.float32(target_gray / 255.0) tpl_sum, tpl_sqsum = cv.integral2(tpl_gray) t_sum, t_sqsum = cv.integral2(target_gray) matcher = NCCTemplateMatch([tpl_gray], [target_gray], [0.85], [tpl_sum], [tpl_sqsum], [t_sum], [t_sqsum]) matcher.run_match() for rect_box in matcher.nms_boxes[0]: cv.rectangle(target_image, (rect_box[0], rect_box[1]), (rect_box[0]+rect_box[2], rect_box[1]+rect_box[3]), (0, 0, 255), 2, 8, 0) cv.imshow("result", target_image) cv.waitKey(0) cv.destroyAllWindows()模板图像:
运行结果如下:
全部0条评论
快来发表一下你的评论吧 !