电感是开关电源中必不可少的器件之一,涉及到磁的理论知识;AC/DC用到的电感有:EMI滤波电感,PFC电感、输出滤波电感、反激变压器(实为耦合电感);板上DC/DC用到的电感多为EMI滤波电感、BUCK输出电感、Boost输入电感等;
电感的性能参数
电感的基本原理
电感的功能就是以磁场能的形式储存电能量。以圆柱型线圈为例,简单介绍下电感的基本原理,
如上图所示,当恒定电流流过线圈时,根据右手螺旋定则,会形成一个图示方向的静磁场。而电感中流过交变电流,产生的磁场就是交变磁场,变化的磁场产生电场,线圈上就有感应电动势,产生感应电流:
电流变大时,磁场变强,磁场变化的方向与原磁场方向相同,根据楞次定律,产生的感应电流与原电流方向相反,电感电流减小;
电流变小时,磁场变弱,磁场变化的方向与原磁场方向相反,根据楞次定律,产生的感应电流与原电流方向相同,电感电流变大。
最终效果就是电感会阻碍流过的电流产生变化,就是电感对交变电流呈高阻抗。同样的电感,电流变化率越高,产生的感应电流越大,那么电感呈现的阻抗就越高;如果同样的电流变化率,不同的电感,如果产生的感应电流越大,那么电感呈现的阻抗就越高。
所以,电感的阻抗于两个因素有关:一是频率;二是电感的固有属性,也就电感的值,也称为电感。根据理论推导,圆柱形线圈的电感公式如下:
电感的等效模型
对于实际的电感而言,实际电感的特性不仅仅有电感的作用,还有其他因素,如:绕制线圈的导线不是理想导体,存在一定的电阻;电感的磁芯存在一定的热损耗;电感内部的导体之间存在着分布电容。
因此,需要用一个较为复杂的模型来表示实际电感,常用的等效模型如下:
自谐振频率
自谐振频率(Self-Resonance Frequency):由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。
品质因素
-品质因素(Quality Factor):也就是电感的Q值,电感储存功率与损耗功率的比,Q值越高,电感的损耗越低,和电感的直流阻抗直接相关的参数。自谐振频率和Q值是高频电感的关键参数.
Q=ωLrQ=rωL
ωω:角频率;L:电感值;r:等效电阻
电感尺寸
电感尺寸长*宽*高:正比于L∗I2L∗I2
L∗I2=LI∗I=N∗B∗Ae∗H∗Ie/N=B∗B∗Ae∗Ie/UL∗I2=LI∗I=N∗B∗Ae∗H∗Ie/N=B∗B∗Ae∗Ie/U
如何减小尺寸:
高频--电感量小
多相--L(I22)+L(I22)=0.5L∗I2L(2I2)+L(2I2)=0.5L∗I2
额定电流(温升电流)
当电感有电流通过的时候,由于损耗的存在,电感发热而产生温升,电流越大,温升越大;在额定的温度范围内,允许的最大电流即为温升电流。
额定电流(温升电流)通常指线圈温升40℃得到的直流电流值,该电流值和封装成正比,和DCR成反比
温升电流是对电感热效应的评估,根据焦耳定律,热效应需要考虑一段时间内的电流对时间的积分;选择电感时,设计RMS电流不能超过电感温升电流。
电感量
电感量是衡量电流产生磁通能力的一个参数,通常有20%的误差
引入磁阻的概念:
Rm=Ie/(U0∗Ur∗Ae)∗L=N2∗U0∗Ur∗Ae/IeRm=Ie/(U0∗Ur∗Ae)∗L=N2∗U0∗Ur∗Ae/Ie
Lg=N2∗U0∗Ae/IG(铁氧体磁芯开气隙电感量)Lg=N2∗U0∗Ae/IG(铁氧体磁芯开气隙电感量)
对于DCDC芯片所使用的电感而言,电感值越大,纹波越小,但尺寸会变大;通常提高开关频率,可以使用小电感,但开关频率提高会增加系统损耗,降低效率
饱和电流
增加磁芯的磁导率,可以提高电感值,通常使用铁磁性材料做磁芯。铁磁性材料存在磁饱和现象,即当磁场强度超过一定值时,磁感应强度不在增加,即磁导率下降了,也就是电感下降了。在额定电感值范围内,允许的最大电流即为饱和电流。
饱和电流通常是额定电流的1.3-1.5倍;饱和电流是指在该电流下电感量下降了额定值的30%;
为了保证在设计范围内电感值稳定,设计峰值电流不能超过电感的饱和电流。为了提高可靠性,降额设计是必须的,通常建议工作值应降额到不高于额定值的80%
直流阻抗(DCR)
直流阻抗(DCR)就是指电感线圈的阻抗,规格书是25℃的测量值,该阻抗是正温度系数。
电感的种类
-电感根据工艺结构的差别,大体可分为三类
绕线电感(Wire Wound Type)
绕线电感(Wire Wound Type),顾名思义就是把铜线绕在一个磁芯上形成一个线圈,绕线的方式有两种:圆柱形绕法(Round Wound)和平面形绕法(Flat Wound)
其采用的磁芯可以是:
非磁性材料:例如空气芯、陶瓷芯,貌似就不能叫磁芯了;这样电感值较小,但是基本不存在饱和电流
铁磁性材料:例如铁氧体、波莫合金等等;合金磁导率比铁氧体大;铁磁性材料存在磁饱和现象,有饱和电流。
绕线电感可提供大电流、高感值;磁芯磁导率越大,同样的感值,绕线就少,绕线少就能降低直流电阻;同样的尺寸,绕线少可以绕粗,提高电流。
多层片状电感(Multilayer Type)
多层片状电感(Multilayer Type)的制作工艺:将铁氧体或陶瓷浆料干燥成型,交替印刷导电浆料,最后叠层、烧结成一体化结构(Monolithic)。
多层片状电感的比绕线电感尺寸小,标准化封装,适合自动化高密度贴装;一体化结构,可靠性高,耐热性好。
薄膜电感(Thin Film Type)
薄膜电感采用的是类似于IC制作的工艺,在基底上镀一层导体膜,然后采用光刻工艺形成线圈,最后增加介质层、绝缘层、电极层,封装成型。
薄膜器件的制作工艺,如下图所示:
光刻工艺的精度很高,制作出来的线条更窄、边缘更清晰。因此,薄膜电感具有:更小的尺寸,008004封装;更小的Value Step,0.1nH;更小的容差,0.05nH;更好的频率稳定性
电感的应用
功率电感
功率电感通常用于DC-DC电路中,通过积累并释放能量来保持连续的电流。功率电感大都是绕线电感,可以提高大电流、高电感。
多层片状功率电感也越来越多,通常电感值和电流都较低,优点是成本较低、体积超小,在手机等空间限制较大的产品中有较多应用。
功率电感需要根据所选的DCDC芯片来选型。通常,DCDC芯片的规格书上都有推荐的电感值,以及相关参数的计算,这里不再赘述。
去耦电感
去耦电感也叫Choke,教科书上通常翻译成扼流圈。去耦电感的作用是滤除线路上的干扰,属于EMC器件,EMC工程师主要用来解决产品的辐射发射(RE)和传导发射(CE)的测试问题。去耦电感,通常结构比较简单,大都是铜丝直接绕在铁氧体环上。可以分为差模电感和共模电感。
差模电感
差模电感就是普通的绕线电感,用于滤除一些差模干扰,主要就是与电容一起构成LC滤波器,减小电源噪声。
选择差模电感需要注意一下几点:
直流电阻、额定电压和电流,要满足工作要求;
结构尺寸满足产品要求;
通过测试确定噪声的频段,根据电感的阻抗曲线选择电感;
设计LC滤波器,可以做简单的计算和仿真。
共模电感
共模电感就是在同一个铁氧体环上绕制两个匝数相同、绕向相反的线圈。
当有共模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相同的磁场,相互加强,相当于对共模信号存在较高的感抗;当有差模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相反的磁场,相互抵消,相当于对差模信号存在较低的感抗。
换一个方式理解:当V+上流过一个频率的共模干扰,形成的交变磁场,会在另一个线圈上形成一个感应电流,根据左手定则,感应电流的方向与V-上共模干扰的方向相反,就抵消了一部分,减小了共模干扰。
共模电感主要用于双线或者差分系统,如220V市电、CAN总线、USB信号、HDMI信号等等。用于滤除共模干扰,同时有用的差分信号衰减较小。
共模电感选型需要注意一下几点:
直流阻抗要低,不能对电压或有用信号产生较大影响;
用于电源线的话,要考虑额定电压和电流,满足工作要求;
通过测试确定共模干扰的频段,在该频段内共模阻抗应该较高;、
差模阻抗要小,不能对差分信号的质量产生较大影响;
考虑封装尺寸,做兼容性设计。例如用于USB信号的共模电感,选择封装可以与两个0402的电阻做兼容,不需要共模电感时,可以直接焊0402电阻,降低成本。
高频电感
高频电感主要应用于手机、无线路由器等产品的射频电路中,从100MHz到6GHz都有应用。高频电感在射频电路中主要有以下几种作用:
匹配(Matching):与电容一起组成匹配网络,消除器件与传输线之间的阻抗失配,减小反射和损耗;
滤波(Filter):与电容一起组成LC滤波器,滤出一些不想要的频率成分,防止干扰器件工作;
隔离交流(Choke):在PA等有源射频电路中,将射频信号与直流偏置和直流电源隔离;
谐振(Resonance):与电容一起构成LC振荡电路,作为VCO的振荡源;
巴仑(Balun):即平衡不平衡转换,与电容一起构成LC巴仑,实现单端射频信号与差分信号之间的转换。
选择高频电感时,除了需要确定电感值、额定电流、工作温度、封装尺寸外,还要关注自谐振频率、Q值、电感值容差、电感值频率稳定性。
之前介绍的三种结构,都可以用来制作高频电感,下面介绍下他们的特点:
多层型
多层型通过烧结,形成一个整体结构,或叫独石型(Monolithic)
多层片状电感的,相比于其他两种就是Q值最低,最大的优势就是成本低,性价比高,适合于大多数没有特殊要求的应用。TDK和Taiyo Yuden的高频电感都只有多层型,没有绕线型和薄膜型。TDK的MLK系列、Murata的LQG系列、Taiyo Yuden的HK系列,这三个系列的产品基本一样,最便宜,性价比高。
当然随着工艺技术的提升,现在也有高Q值系列的多层片状电感,例如TDK的MHQ系列、太阳诱电的HKQ系列。
TDK的多层电感做的更好更全,还有一个MLG系列,有0402封装,感值可以做0.3nH,Value Step 0.1nH,容差0.1nH,接近薄膜电感的性能,价格还便宜。
绕线型
随着现在的工艺水平已经越来越高,绕线电感也可以做到0402封装。
绕线型工艺,其导线可以做到比多层和薄膜结构粗,因此可以获得极低的直流电阻。也意味着极高的Q值,同时可以支持较大的电流。将无磁性的陶瓷芯换成铁氧体磁芯,可以得到较高的感值,可以应用与中频。
Murata的LQW系列可以做到03015封装,最小感值1.1nH;Coilcraft的0201DS系列,可以做到0201封装,号称世界上最小的绕线电感。
薄膜型
采用光刻工艺,工艺精度极高,因此电感值可以做到很小,尺寸也可以做到很小,精度高,感值稳定,Q值较高。
Murata的LQP系列,可以做到01005封装,高精度产品的容差可以做到0.05nH,最小感值可以到0.1nH,这三个参数值可以说是当前电感的极限了。其他,像Abracon的ATFC-0201HQ系列也可以做到最小0.1nH。
Murata有三种工艺的高频电感,选择了同感值(1.5nH)、同封装、同容差的电感对比。
可以看出绕线型的Q值明显高于其他两种,而薄膜型的电感值的频率稳定性高于其他两种。当然,多层型的成本明显低于其他两种。
全部0条评论
快来发表一下你的评论吧 !