技术科普 | 下一代芯片技术,新突破

描述

一项新研究表明,利用“混沌边缘”可大大简化电子芯片,混沌边缘可使长金属线放大信号并充当超导体,从而减少对单独放大器的需求并降低功耗。

 

研究人员发现了“混沌边缘”如何帮助电子芯片克服信号损失,从而使芯片变得更简单、更高效。

 

通过在半稳定材料上使用金属线,该方法可以使长金属线像超导体一样发挥作用并放大信号,通过消除对晶体管放大器的需求并降低功耗,有可能改变芯片设计。

 

 

利用混沌边缘技术革新芯片设计

 

 

脚趾被撞到后,疼痛信号会立即通过几米长的轴突传到大脑,这些轴突由高电阻肉质材料组成。这些轴突采用一种称为“混沌边缘”或半稳定性的原理,能够快速准确地传输信息。

 

这项研究通过无机材料传导电流,展示了混沌边缘在人工系统中的作用。通常,混沌边缘会放大噪声。然而,令人惊讶的是,放置在混沌边缘材料顶部的金属线不仅传导了有用信号,还放大了有用信号。这种方法有效地抵消了通常会降低信号完整性的金属电阻损耗。

 

现代电子芯片由众多元件和大量金属线(称为互连)组成。这些金属线会造成严重的电阻信号损失,从而严重消耗芯片的电量。传统的解决方案是将这些线分成较短的线段,并加入晶体管来增强和中继减弱的信号。

 

这种创新方法无需晶体管放大器,使长金属线不仅能实现超导体般的零电阻,还能增强小信号。这种进步可以从根本上简化芯片设计并大大提高效率。

 

芯片设计

 

沌边缘偏置介质上的金属线可以为时变信号提供有效的负电阻,输出比输入更大的信号。放大的能量来自施加到介质上的静态偏置。图片来源:Brown, TD, 等人 (reMIND),类似轴突的主动信号传输。《自然》(2024 年)。

 

 

推进电子产品信号传输

 

 

由于金属本身具有电阻,通过金属导体传输的电信号会减弱强度。为了弥补这一缺陷,传统方法需要反复中断导体以插入可再生信号的放大器。这种技术已使用了一个多世纪,限制了现代密集互连芯片的设计和性能。相比之下,这项研究引入了一种基于利用半稳定混沌边缘 (EOC) 的新方法,这是科学家们理论化但之前从未证明过的机制。该机制支持类似于生物轴突中看到的自我放大的主动信号传输。

 

 

利用混沌的半稳定边缘实现高效电子设备

 

 

通过电接触钴酸镧 (LaCoO 3 )中的自旋交叉,研究人员分离出半稳定的 EOC,并在金属传输线中引发负电阻和信号放大,而无需单独的放大器,并且温度和压力均为正常。Operando 热图显示,用于维持 EOC 的能量并未完全以热量的形式流失,而是部分被重新定向以放大信号,从而实现持续主动传输,并可能彻底改变芯片设计和性能。

 

参考链接

https://scitechdaily.com/next-gen-electronics-breakthrough-harnessing-the-edge-of-chaos-for-high-performance-efficient-microchips/

 

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分