针对物联网中服务数量的大规模性、服务描述的异构性以及设备服务的资源高度受限性和移动性等特点,提出了一种基于概率主题模型的物联网服务发现方法.该方法的主要特点是:1)利用英文Wikipedia构建高质量的主题模型,并对类似短文本的服务文本描述进行语义扩充,使主题模型能够更有效地估计服务文本描述的隐含主题;2)提出利用非参数主题模型学习服务文本的隐含主题,降低模型训练时间;3)利用服务隐含主题对服务进行自动分类和文本相似度计算,快速减少服务匹配数量,加速服务文本相似度计算;4)提出能够同时支持WSDL-based和RESTful两种物联网服务的signature匹配算法.实验结果表明:与现有的物联网服务发现方法相比,该方法的准确率(precision)和归一化折损累积增益(NDCG)都有较大幅度的提高.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !