凝聚前行携手共赢 | 耐高温绝缘氮化硼导热垫片

描述

 

      电子器件高频、高速和集成电路技术的迅猛发展,电子元器件的总功率密度急剧增加,而物理尺寸却越来越小。由此带来的高温环境不可避免地对电子元器件的性能产生影响,因此需要更有效的热控制方法。解决电子元器件散热问题成为当前的重点任务。电子元器件的高效散热问题主要受传热学和流体力学原理的影响。电气器件的散热是控制电子设备运行温度,从而保证其温度性能和安全性的过程。这涉及散热和材料等多个方面的内容。目前主要的散热方式包括自然散热、强制散热、液体散热、制冷散热、疏导散热和热管散热等。

 

      而随着需求的增长、应用场景的多元化,以及内部IGBT集成件化、微型化等发展趋势,电子电气产品正面临着更为严峻的“热度”挑战。作为变频技术的主要应用之一,变频空调依托变频器内的IPM、IGBT、二极管等高功率元器件,实时调节压缩机运转速度,实现了优异的节能性和温度均匀性,近年来逐步成为市场主流。

 

 

单管IGBT和IGBT模块对产品安全、可靠性提出耐高温、散热性优、工作温度范围广、使用寿命长等更高要求。芯片的散热主要通过IGBT模块中的陶瓷基板来实现,其作用是吸收芯片的产热并传导至热沉上,从而实现芯片与外界之间的热交换,对于热界面材料有耐高温阻燃高导热高绝缘的要求。

 

  热界面材料的选择(Thermal Interface Material, TIM)

选择理想的热界面材料需要关注以下因素:

1)热导率:热界面材料的体热导率决定了它在界面间传递热量的能力,减少热界面材料本身的热阻;

2)热阻:理想情况下应尽可能低,以保持设备低于其工作温度;

3)导电性:通常是基于聚合物或聚合物填充的不导电材料;

4)相变温度:固体向液体转变,界面材料填充空隙,保证所有空气被排出的温度;

5)粘度:相变温度以上的相变材料粘度应足够高,以防止在垂直方向放置时界面材料流动滴漏;

6)工作温度范围:必须适应应用环境;

7)压力:夹紧产生的安装压力可以显著改善TIM的性能,使其与表面的一致性达到最小的接触电阻;

8)排气:当材料暴露在高温和/或低气压下时,这种现象是挥发性气体的释放压力;

9)表面光洁度:填充颗粒影响着界面的压实和润湿程度,需要更好地填补了不规则表面的大空隙;

10)易于应用:容易控制材料应用的量;

11)材料的机械性能:处于膏状或液态易于分配和打印;

12)长期的稳定性和可靠性:需要在设备的整个寿命周期内始终如一地执行(如微处理器7-10年,航空电子设备和电信设备的寿命预计为数十年);13)成本:针对不同应用,在性能、成本和可制造性等因素进行综合权衡。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分