电子说
相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。
相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。
将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。
假如电场仪探头处于正电场中,探头的感应电压信号V1(t)和同步信号VC(t)分别经图3的检波器输入。
当V1(t)为负半周,VC(t)为低电平时,A点电压为负半周,B点电压为正半周,MC14066BCP中的模拟开关1与开关3断开,模拟开关4导通,则O4引脚输出为V2(t)的负半周,O3引脚输出为高阻状态;当V1(t)为正半周,Vc(t)为高电平时,A点电压为正半周,B点电压为负半周, MC14066BCP中的模拟开关1与开关3导通,模拟开关4断开,则O4引脚输出为高阻状态,O3引脚输出为V2(t)的负半周。在整个信号周期T内,检波输出信号V2(t)始终为负半周,该输出信号经反相滤波器滤波后,得到一正直流电压信号V3(t),因此根据V3(t)的极性,可以得出被测电场为正电场,其工作波形如图3(a)所示。
设在一个周期T内,动片旋转的角度为φ,也即小叶片旋转的角度为φ,则:
由于没有考虑电感对I-V转换电路的影响,在实际的操作中,应通过实验在-φ/(2π)ωRC{ln[1+exp(-π/(ωRC))]/2)~φ/4之间寻找出初始角φ′的最佳值。同时,由于没有考虑模拟开关的误差,在大气电场仪中还需要通过软件进行校准和补偿。
在电场仪设计中,根据式(5)可求得初始角φ′=33.23°,但实际选择φ′=37°。图4为被测电场在-600 V/m情况下,分别选取初始角φ′=0°和φ′=37°时,相敏检波电路的两组对比实验波形。波形1为I-V转换后的感应电压信号,频率为40 Hz,其幅值与被测电场的强度成正比;波形2为从模拟开关输出的全波检波信号即低通滤波器的输入信号,该电压信号的极性与被测电场的极性相反。通过观察两组实验波形可发现,当初始角φ′=O°时,由于微弱感应电压信号V1(t)与同步脉冲信号Vc(t)不同相,全波检波后的波形仍为一交流信号,不具有单一方向,经低通滤波器后将被滤除掉,得不到平稳的直流电压信号,而当初始角φ′设置为37°时,全波检波后为单一正方向脉动直流电压信号,即保证了微弱感应电压信号V1(t)与同步脉冲信号Vc(t)的同相。因此,经低通滤波器后输出一负极性直流电压信号,即可判断出被测电场为负电场,从而实现了被测电场极性的准确鉴别。
相敏检波电路(与滤波器配合)可以将调幅波还原成原信号波形,起解调作用;并具有鉴别信号相位的能力。下面给出典型的二极管相敏检波电路及其输入输出关系图。它由四个特性相同的二极管D1~D4沿同一方向串联成一个桥式回路,桥臂上有附加电阻,用于桥路平衡。四个端点分别接在变压器A和B的次级线圈上,变压器A的输入为调幅波xm(t),B的输入信号为载波y(t),uf为输出。二极管的导通与截止完全由B的次级的输出决定,因此要求B的次级的输出大于A的次级输出。
全部0条评论
快来发表一下你的评论吧 !