功率放大器电路图
本文介绍的这款话筒功放电路,外围元件少,制作简单,音质却出乎意料的好。采用一块双路音频放大集成电路。其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15VDC),即使在1.8V低电压下使用,仍会有约100mW的功率输出,具体电路如图所示。
驻极体话筒BM将拾取的声音信号转换成电信号后,经C2和W从IC的②脚引入,经IC音频放大后,推动喇叭发音。本机接成BTL输出电路,这对于改善音质,降低失真大有好处,同时输出功率也增加了4倍,当3V供电时,其输出功率为350mW。
电阻R1、R2均选用1/4W金属膜电阻,W为小型碳膜电位器,C2最好选用独石电容器,如没有应选用质量好的瓷片电容,C1、C4、C3选用优质耐压16V,漏电电流小的电解电容,BM选用高灵敏度驻极体传声器。K选用小型的按钮开关或拨动开关等,IC选用TDA2822M或TDA2822,也可用D2822代替。按图1中数值制作,一般无需调试即可正常工作。
传声器的前置放大电路如图2所示。图中运放采用了美国美信公司的麦克风前置放大器MAX4465,MAX4465为5脚SC70封装,低成本,微功耗。下面对这一电路的原理进行简化分析和说明。为便于电路的分析,令Z1=R1+1/(jωC1),Z2=R2//1/(jωC2)=R2/(1+jωR2C2),根据理想运放所具有的虚短和虚断的特点,可以得到电路的传递函数为:
从式(1)可以看出。当ω→∞或ω→0时,电路的传递函数Au→1。
在语音信号的频段(20Hz~20kHz)内,选择合适的R2、C2值,使R2C2≈O,则1+jωR2C2≈1,若1+jωR1C1≈jωR1C1则带入式(1)传递函数中,可得Au≈1+R2/R1。若取R2=10R1,则Au=1+R2/R1≈R2/R1。
当信号的频率较高时,即在通频带内ω值较大,且R2=10R1时,式(1)可变为:
从上式可以看出,ω=1/(R2C2),即f=1/(2πR2C2)是电路对应的上限截止频率。
当信号的频率较低时,即在通频带内ω值较小且R2=10R1时,则1+jωR2C2≈1,式(1)可变为:
一个简单的麦克风放大器,可使用以下电子计划实现。该放大器使用一个麦克风,驻极体麦克风胶囊,但可以使用和动态麦克风,具有低电阻,可以使用。该电路需要5至10伏的电源电压,建议使用9伏直流电源电压。因为大会有一个非常低的功耗(约1.5米),安装,可以使用9伏电池供电。飞利浦LBC1055/00驻极体胶囊R1,C3和R8的值。扩增取决于比例R7/R3,大于100。
驻极体话筒工作原理:当驻极体膜片遇到声波振动时,就会引起与金属极板间距离的变化,也就是驻极体振动膜片与金属极板之间的电容随着声波变化,进而引起电容两端固有的电场发生变化(U=Q/C),从而产生随声波变化而变化的交变电压。由于驻极体膜片与金属极板之间所形成的“电容”容量比较小(一般为几十波法),因而它的输出阻抗值(XC=1/2πfC)很高,约在几十兆欧以上。这样高的阻抗是不能直接与一般音频放大器的输入端相匹配的,所以在话筒内接入了一只结型场效应晶体三极管来进行阻抗变换。通过输入阻抗非常高的场效应管将“电容”两端的电压取出来,并同时进行放大,就得到了和声波相对应的输出电压信号。驻极体话筒内部的场效应管为低噪声专用管,它的栅极G和源极S之间复合有二极管VD,参见图1(b)所示,主要起“抗阻塞”作用。由于场效应管必须工作在合适的外加直流电压下,所以驻极体话筒属于有源器件,即在使用时必须给驻极体话筒加上合适的直流偏置电压,才能保证它正常工作,这是有别于一般普通动圈式、压电陶瓷式话筒之处。
外形和种类:常用驻极体话筒的外形分机装型(即内置式)和外置型两种。机装型驻极体话筒适合于在各种电子设备内部安装使用。常见的机装型驻极体话筒形状多为圆柱形,其直径有φ6mm、φ9.7mm、φ10mm、φ10.5mm、φ11.5mm、φ12mm、φ13mm多种规格;引脚电极数分两端式和三端式两种,引脚形式有可直接在电路板上插焊的直插式、带软屏蔽电线的引线式和不带引线的焊脚式3种。如按体积大小分类,有普通型和微型两种。
工作电压:Uds1.5~12V,常用的有1.5V,3V,4.5V三种
工作电流:Ids0.1~1mA之间
输出阻抗:一般小于2K(欧姆)
灵敏度:单位:伏/帕,国产的分为4档,红点(灵敏度最高)黄点,蓝点,白点(灵敏度最低)
频率响应:一般较为平坦
指向性:全向
等效噪声级:小于35分贝
关于驻极体电容式话筒的检测方法是:首先检查引脚有无断线情况,然后检测驻极体电容式话筒。驻极体话筒体积小,结构简单,电声性能好,价格低廉,应用非常广泛。驻极体话筒的内部由声电转换系统和场效应管两部分组成。它的电路的接法有两种:源极输出和漏极输出。源极输出有三根引出线,漏极D接电源正极,源极S经电阻接地,再经一电容作信号输出;漏极输出有两根引出线,漏极D经一电阻接至电源正极,再经一电容作信号输出,源极S直接接地。所以,在使用驻极体话筒之前首先要对其进行极性的判别。
在场效应管的栅极与源极之间接有一只二极管,因而可利用二极管的正反向电阻特性来判别驻极体话筒的漏极D和源极S。将万用表拨至R&TImes;1kΩ档,黑表笔接任一极,红表笔接另一极。再对调两表笔,比较两次测量结果,阻值较小时,黑表笔接的是源极,红表笔接的是漏极。
驻极体话筒检测极性判别:将万用表拨至“R&TImes;100”或“R&TImes;1k”电阻挡,黑表笔接任意一极,红表笔接另外一极,读出电阻值数;对调两表笔后,再次读出电阻值数,并比较两次测量结果,阻值较小的一次中,黑表笔所接应为源极S,红表笔所接应为漏极D。同时阻值一大一小,也说明驻极体话筒质量是好的。若测得两次电阻值均为∞、或等于0Ω、或电阻值接近,则说明话筒已损坏或质量不好。
将万用表拨至“R&TImes;100”或“R×1k”电阻挡,按照图(a)所示,黑表笔(万用表内部接电池)接被测两端式驻极体话筒的漏极D,红表笔接接地端(或红表笔接源极S,黑表笔接接地端),此时万用表指针指示在某一刻度上,再用嘴对着话筒的入声孔吹气,万用表指针应有较大摆动。指针摆动范围越大,说明被测话筒的灵敏度越高。如果没有反应或反应不明显,则说明被测话筒已经损坏或性能下降。对于三端式驻极体话筒,按照图(b)所示,黑表笔仍接被测话筒的漏极D,红表笔同时接通源极S和接地端(金属外壳),然后按相同方法吹气检测即可。
将万用表拨至R×100档,两表笔分别接话筒两电极(注意不能错接到话筒的接地极),待万用表显示一定读数后,用嘴对准话筒轻轻吹气(吹气速度慢而均匀),边吹气边观察表针的摆动幅度。吹气瞬间表针摆动幅度越大,话筒灵敏度就越高,送话录音效果就越好。若摆动幅度不大(微动)或根本不摆动,说明此话筒性能差,不宜应用。对于三根引脚驻极体电容式话筒检测方法同上,只是黑表棒接输出引脚2脚,红表棒接引脚3脚。
用于电脑声卡驻集体话筒前端放大,单管甲类加射随,制作简单。制作原因是恼于声卡话筒端灵敏度太低讲话费劲,调试好后,离话筒3米按打火机声音清晰,效果不错。
三极管为任意低频小功管,C1815、C945、9014之类均可。频率,贝塔,功率太高反倒不好。输入输出电容取值建议不要太大,对于语音用途,图中值足够。
75k电阻负责话筒偏置电压,用高内阻万用表测话筒正,应为0.2~1V。否则调整。电压高,增益大,噪音大。反之亦然。
680K电阻决定工作点和反馈,500K可到1M均可,大点增益高,失真大。小则反之。
47K可变决定三极管工作点,不同管型,供电电压需相应变动,前后级有牵连。调整使其失真最小,增益最高。
电压5~15V均可。当然工作点要相应调整。电压高,失真小增益高。电源不要取自电脑电源盒5V~12V输出,有来自主机方波干扰,用外接独立电源。甚至手机充电器都可用。
发光二级管起保护;工作指示用,最好不要省掉。
外壳可用普通串口盒,电路太简单,直接搭焊。注意地线走线不要形成环路,以免干扰和自激。
调试完毕,考虑机械强度问题。可用密封硅胶填充串口盒内空间。
接插件直接用环氧树脂(双组份胶)粘在串口盒的一半上,注意胶要少,加在几个关键受力点就行。太多,把可动触点粘住就麻烦了。
动圈话筒灵敏度实在太低,接此放大器太勉强,有精神时用运放试试。如果要用1.5V供电的话,可以去掉发光二极管,重新计算下几个偏置电阻,保证三极管b,e0.6V,话筒偏置1V即可增益和失真。个人认为5V方案较方便,失真和增益比较折中,废旧充电器遍地都是,随手抓一个就有电,应急还可挂USB取电。
全部0条评论
快来发表一下你的评论吧 !