分水岭算法(理论+opencv实现)

电子说

1.3w人已加入

描述

‍‍‍把图像用一维坐标表示,二维和三维不好画,必须用matlab了,我不会用,意思可以表述到位

第一步:找到图像的局部最低点,这个方法很多了,可以用一个内核去找,也可以一个一个比较,实现起来不难。

第二步:从最低点开始注水,水开始网上满(图像的说法就是梯度法),其中那些最低点已经被标记,不会被淹没,那些中间点是被淹没的。

第三步:找到局部最高点,就是图中3位置对应的两个点。

第四步:这样基于局部最小值,和找到的局部最大值,就可以分割图像了。

OpenCV

分类图

OpenCV

模拟结果图

是不是感觉上面的方法很好,也很简单?接着看下面的图:

利用上面的步骤,第一步找到了三个点,然后第二步开始漫水,这三个点都被记录下来了,又找到两个局部最大值。

这是我们想要的吗?

回答是否定的!其中中间那个最小值我们不需要,因为只是一个很少并且很小的噪点而已,我们不需要图像分割的那么细致。

缺陷显露出来了吧?没关系,下面我们的opencv把这个问题解决了。

OpenCV

模拟分类图 

模拟结果图

opencv改进的分水岭算法:

针对上面出现的问题,我们想到的是能不能给这种小细节一个标记,让它不属于我们找的最小的点呢?

opencv对其改进就是使用了人工标记的方法,我们标记一些点,基于这些点去引导分水岭算法的进行,效果很好!

比如我们对上面的图像标记了两个三角形,第一步我们找到三个局部最小点,第二步淹没的时候三个点都被淹没了,然而中间那个没被标记,那就淹死了(没有救生圈),其余两个点保留,这样就可以达到我们的想要的结果了。

注释:这里的标记是用不同的标号进行的,我为了方便使用了同样的三角形了。因为标记用来分类,所以不同的标记打上不同的标号!这在下面opencv程序中体现了。。。

OpenCV

模拟分类图

模拟结果图

注释:具体的实现没有完成,感觉原理懂了会使用了这样就可以了,当你需要深入的时候再去研究实现的算法,当你浅浅的使用懂了原理应该会改一点,面试过了完全可以啊!哈哈哈~~

opencv实现:

#include

#include

using namespace cv;

using namespace std;

void waterSegment(InputArray& _src, OutputArray& _dst, int& noOfSegment);

int main(int argc, char** argv) {

Mat inputImage = imread("coins.jpg");

assert(!inputImage.data);

Mat graImage, outputImage;

int offSegment;

waterSegment(inputImage, outputImage, offSegment);

waitKey(0);

return 0;

}

void waterSegment(InputArray& _src,OutputArray& _dst,int& noOfSegment)

{

Mat src = _src.getMat();//dst = _dst.getMat();

Mat grayImage;

cvtColor(src, grayImage,CV_BGR2GRAY);

threshold(grayImage, grayImage, 0, 255, THRESH_BINARY | THRESH_OTSU);

Mat kernel = getStructuringElement(MORPH_RECT, Size(9, 9), Point(-1, -1));

morphologyEx(grayImage, grayImage, MORPH_CLOSE, kernel);

distanceTransform(grayImage, grayImage, DIST_L2, DIST_MASK_3, 5);

normalize(grayImage, grayImage,0,1, NORM_MINMAX);

grayImage.convertTo(grayImage, CV_8UC1);

threshold(grayImage, grayImage,0,255, THRESH_BINARY | THRESH_OTSU);

morphologyEx(grayImage, grayImage, MORPH_CLOSE, kernel);

vector> contours;

vector hierarchy;

Mat showImage = Mat::zeros(grayImage.size(), CV_32SC1);

findContours(grayImage, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(-1, -1));

for (size_t i = 0; i < contours.size(); i++)

{

//这里static_cast(i+1)是为了分水岭的标记不同,区域1、2、3。。。。这样才能分割

drawContours(showImage, contours, static_cast(i), Scalar::all(static_cast(i+1)), 2);

}

Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));

morphologyEx(src, src, MORPH_ERODE, k);

watershed(src, showImage);

//随机分配颜色

vector colors;

for (size_t i = 0; i < contours.size(); i++) {

int r = theRNG().uniform(0, 255);

int g = theRNG().uniform(0, 255);

int b = theRNG().uniform(0, 255);

colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));

}

// 显示

Mat dst = Mat::zeros(showImage.size(), CV_8UC3);

int index = 0;

for (int row = 0; row < showImage.rows; row++) {

for (int col = 0; col < showImage.cols; col++) {

index = showImage.at(row, col);

if (index > 0 && index <= contours.size()) {

dst.at(row, col) = colors[index - 1];

}

else if (index == -1)

{

dst.at(row, col) = Vec3b(255, 255, 255);

}

else {

dst.at(row, col) = Vec3b(0, 0, 0);

}

}

}

}

分水岭合并代码:

void segMerge(Mat& image, Mat& segments, int& numSeg)

{

vector samples;

int newNumSeg = numSeg;

//初始化变量长度的Vector

for (size_t i = 0; i < newNumSeg; i++)

{

Mat sample;

samples.push_back(sample);

}

for (size_t i = 0; i < segments.rows; i++)

{

for (size_t j = 0; j < segments.cols; j++)

{

int index = segments.at(i, j);

if (index >= 0 && index <= newNumSeg)//把同一个区域的点合并到一个Mat中

{

if (!samples[index].data)//数据为空不能合并,否则报错

{

samples[index] = image(Rect(j, i, 1, 1));

}

else//按行合并

{

vconcat(samples[index], image(Rect(j, i, 2, 1)), samples[index]);

}

}

//if (index >= 0 && index <= newNumSeg)

//    samples[index].push_back(image(Rect(j, i, 1, 1)));

}

}

vector hist_bases;

Mat hsv_base;

int h_bins = 35;

int s_bins = 30;

int histSize[2] = { h_bins , s_bins };

float h_range[2] = { 0,256 };

float s_range[2] = { 0,180 };

const float* range[2] = { h_range,s_range };

int channels[2] = { 0,1 };

Mat hist_base;

for (size_t i = 1; i < numSeg; i++)

{

if (samples[i].dims > 0)

{

cvtColor(samples[i], hsv_base, CV_BGR2HSV);

calcHist(&hsv_base, 1, channels, Mat(), hist_base, 2, histSize, range);

normalize(hist_base, hist_base, 0, 1, NORM_MINMAX);

hist_bases.push_back(hist_base);

}

else

{

hist_bases.push_back(Mat());

}

}

double similarity = 0;

vector merged;//是否合并的标志位

for (size_t i = 0; i < hist_bases.size(); i++)

{

for (size_t j = i+1; j < hist_bases.size(); j++)

{

if (!merged[j])//未合并的区域进行相似性判断

{

if (hist_bases[i].dims > 0 && hist_bases[j].dims > 0)//这里维数判断没必要,直接用个data就可以了

{

similarity = compareHist(hist_bases[i], hist_bases[j], HISTCMP_BHATTACHARYYA);

if (similarity > 0.8)

{

merged[j] = true;//被合并的区域标志位true

if (i != j)//这里没必要,i不可能等于j

{

newNumSeg --;//分割部分减少

for (size_t p = 0; p < segments.rows; p++)

{

for (size_t k = 0; k < segments.cols; k++)

{

int index = segments.at(p, k);

if (index == j) segments.at(p, k) = i;

}

}

}

}

}

}

}

}

numSeg = newNumSeg;//返回合并之后的区域数量

}

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分