基于量子传感器的全新显微镜:实现超高分辨率光学成像

电子说

1.4w人已加入

描述

量子传感器

  光学宽场核磁共振显微镜的基本原理

  慕尼黑工业大学(TUM)的研究人员开创了一个全新的显微领域——核自旋显微镜技术。该团队成功通过显微镜实现了核磁共振磁信号的可视化,利用量子传感器将信号转化为光,从而实现了超高分辨率的光学成像。

  核磁共振成像(MRI)扫描仪因其能够深入人体内部生成器官和组织图像而闻名。这项发表于《自然·通讯》期刊的新技术,将这一能力延伸至微观细节领域。量子传感教授、慕尼黑量子科学与技术卓越中心(MCQST)研究员Dominik Bucher解释道:"量子传感器能够将磁共振信号转化为光信号,这些信号通过相机捕捉后即可形成图像。"

  钻石芯片:量子传感器的核心

  新型核磁共振显微镜的分辨率达到了百万分之十米量级,这一精度未来甚至能够揭示单个细胞的结构奥秘。该显微镜的核心部件是一块微型钻石芯片。

  这块经过原子级特殊处理的钻石,作为核磁共振磁场的超灵敏量子传感器,在激光照射下会产生携带核磁共振信号信息的荧光信号。通过高速相机记录这些信号,研究人员能够生成分辨率突破至微观层级的精细图像。

  广阔的应用前景

  核磁共振显微技术展现出令人瞩目的应用潜力:在癌症研究领域,科学家可对单个细胞进行精细观测,为肿瘤生长与扩散机制提供新见解;在药物研发中,该技术能助力分子层面的活性成分高效筛选与优化;材料科学领域同样受益,例如用于分析薄膜材料或催化剂的化学成分。

  目前研究团队已为这项创新技术申请专属使用,并计划进一步优化其速度与精度。长期来看,它有望成为医学诊断和科研领域的标准工具。论文第一作者Karl D. Briegel说:"量子物理与成像技术的融合,为我们在分子层面认知世界开辟了全新可能"。

审核编辑 黄宇

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分