高频逆变器后级电路图原理

变流、电压变换、逆变电路

305人已加入

描述

  高频逆变器简介

  高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电,最后通过工频逆变电路得到220V工频交流电供负载使用。高频逆变器的优缺点:高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。

  高频逆变器的分类

  (1)方波逆变器

  方波逆变器输出的交流电压波形为方波。此类逆变器所使用的逆变线路也不完全相同,但共同的特点是线路比较简单,使用的功率开关管数量很少。设计功率一般在百瓦至千瓦之间。方波逆变器的优点是:线路简单、价格便宜、维修方便。缺点是由于方波电压中含有大量高次谐波,在带有铁心电感或变压器的负载用电器中将产生附加损耗,对收音机和某些通讯设备有干扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪声比较大等缺点。

  (2)阶梯波逆变器

  此类逆变器输出的交流电压波形为阶梯波,逆变器实现阶梯波输出也有多种不同线路,输出波形的阶梯数目差别很大。阶梯波逆变器的优点是,输出波形比方波有明显改善,高次谐波含量减少,当阶梯达到17个以上时输出波形可实现准正弦波。当采用无变压器输出时,整机效率很高。缺点是,阶梯波叠加线路使用的功率开关管较多,其中有些线路形式还要求有多组直流电源输入。这给太阳电池方阵的分组与接线和蓄电池的均衡充电均带来麻烦。此外,阶梯波电压对收音机和某些通讯设备仍有一些高频干扰。

  高频逆变器使用范围

  目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、音响、摄像机、数码相机、车载冰箱、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD。

  高频逆变器后级电路图原理

  后级电路的基本功能就是把前级升压的高压直流电逆变成交流电。从结构来说全桥结构用得最多。

  下面以单相正弦波逆变器的后级电路为例讲解下,部分电路如下图:

高频逆变器

  1、米勒电容对高压MOS管安全的影响及其解决办法

  我记得以前很多网友提到IR2110推动全桥MOS非常不稳定,经常莫名奇妙地炸管,往往在低压试验时好好的,母线电压一调高就炸了,这确实是个令人非常头疼的问题。我们先来分析一下MOS管GD结电容,也叫米勒电容对半桥上下两管开关的影响。供分析的电路如下:

高频逆变器

  图中C1,C2分别是Q1,Q2的GD结电容,左边上下两个波形分别是Q1,Q2的栅极驱动波形。我们先从t1-t2死区时刻开始分析,从图中可以看出这段时间为死区时间,也就是说这段时间内两管都不导通,半桥中点电压为母线电压的一半,也就是说C1,C2充电也是母线电压的一半。当驱动信号运行到t2时刻时,Q1的栅极变为高电平,Q1开始导通,半桥中点的电位急剧上升,C2通过母线电压充电,充电电流通过驱动电阻Rg和驱动电路放电管Q4,这个充电电流会在驱动电阻Rg和驱动电路放电管Q4上产生一个毛刺电压,请看图中t2时刻那条红色的竖线。如果这个毛刺电压的幅值超过了Q2的开启电压Qth,半桥的上下两管就共通了。有时候上下两管轻微共通并不一定会炸管,但会造成功率管发热,在母线上用示波器观察也会看到很明显的干扰毛刺。只有共通比较严重的时候才会炸管。还有一个特性就是母线电压越高毛刺电压也越高,也越会引起炸管。大家知道了这个毛刺电压产生的原理,我想就很容易解决这个问提了,主要有三种解决办法:

  1)采用栅极有源钳位电路。可以在MOS管的栅极直接用一个低阻的MOS管下拉,让它在死区时导通;

  2)采用RC或RCD吸收电路;

  3)栅极加负压关断,这是效果最好的办法,它可以通过电平平移使毛刺电压平移到源极电平以下,但电路比较复杂。

  2、IR2110应用中需要注意的问题

  IR2110是IR公司早期推出的半桥驱动器,具有功耗小,电路简单,开关速度快等优点,广泛应用于逆变器的全桥驱动中。对于DIP16封装的IR2110在正弦波逆变器的应用中主要要注意以下几点:

  1)13脚的逻辑地和2脚的驱动地在布线时要分开来走,逻辑地一般要接到5V滤波电容的负端,再到高压滤波电容的负端,驱动地一般要接到12-15V驱动电源的滤波电容的负端,再到两个低端高压MOS管中较远的那个MOS的源极。如下图:

高频逆变器

  2)在正弦波逆变器中因为载波的频率较高,母线电压也较高,自举二极管要使用高频高压的二极管。因为载波占空比接近100%,自举电容的容量要按照基波计算,一般需要取到47-100uF,最好并一个小的高频电容。

  3、正弦波逆变器LC滤波器参数的计算

  要准确计算正弦波逆变器LC滤波器的参数确实是件繁琐的事,这里我介绍一套近似的简便计算方法,在实际的检验中也证明是可行的。我的想法是SPWM的滤波电感和正激类的开关电源的输出滤波电感类似,只是SPWM的脉宽是变化的,滤波后的电压是正弦波不是直流电压。如果在半个正弦周期内我们按电感纹波电流最大的一点来计算我想是可行的。下面以输出1000W220V正弦波逆变器为例进行LC滤波器的参数的计算,先引入以下几个物理量:

  Udc:输入逆变H桥的电压,变化范围约为320V-420V;

  Uo:输出电压,0-311V变化,有效值为220V;

  D:SPWM载波的占空比,是按正弦规律不断变化的;

  fsw:SPWM的开关频率,以20kHz为例;

  Io:输出电流,电感的峰值电流约为1.4Io;

  Ton:开关管的导通时间,实际是按正弦规律不断变化的;

  L:LC滤波器所需的电感量;

  R:逆变器的负载电阻。

  于是有:

  L=(Udc-Uo)Ton/(1.4Io)(1)

  D=Uo/Udc(2)

  Ton=D/fsw=Uo/(Udc*fsw)(3)

  Io=Uo/R(4)

  综合(1),(3),(4)有:

  L=(Udc-Uo)*Uo/(1.4Io*Udc*fsw)=R(1-Uo/Udc)/(1.4fsw)

  例如,一台输出功率1000W的逆变器,假设最小负载为满载的15%则,R=220*220/(1000*15%)=323Ω

  从L=R(1-Uo/Udc)/(1.4fsw)可以看出,Uo=Udc的瞬间L=0,不需要电感;Uo越小需要的L越大我们可以折中取当Uo=0.5Udc时的L=323*(1-0.5)/(1.4*20000)=5.8mH这个值是按照输出15%Io时电感电流依然连续计算的,所以比较大,可以根据逆变器的最小负载修正,如最小负载是半载500W,L只要1.7mH了。

  确定了滤波电感我们就可以确定滤波电容C了,滤波电容C的确定相对就比较容易,基本就按滤波器的截止频率为基波的5-10倍计算就可以了。其计算公式为

高频逆变器

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分