基于FPGA的数字识别的方法

电子说

1.3w人已加入

描述

基于FPGA的数字识别的实现一

现如今随着机器识别技术的日益成熟,在我们的日常生活中机器识别也随处可见。大家常见的有二维码识别,指纹识别,车牌识别等,这些技术已经相当成熟。还有现如今比较火的无人驾驶系统。无人驾驶系统中存在很多机器识别技术,包括对人或移动物体的识别,路标识别,以及距离估算等。而各种识别系统中,对数字的识别是必不可少的。数字在我们人类世界无处不在。

目前实现数字识别的方法大致分为以下4种:

1)使用软件编程在传统个人PC上进行实现;

2)使用通用的MCU微型处理器(例如51单片机、ARM等)上进行实现;

3)使用通用DSP作为系统处理器进行实现;

4)使用专用DSP作为运算核心;

除以上四种方法以外,FPGA以其独有的硬件可并行运行的优势,打破了传统处理器顺序执行的模式,可在一个时钟周期内并行完成多个运算,相比于DSP在处理速度与处理能力上有了大幅的提高, 在具有成本低、集成化程度高、便于后期维护、 升级等优势的同时使系统的运行速度能够满足图像实时处理的需求,所以本设计决定采用FPGA作为硬件平台,设计与实现一种基于FPGA的数字识别系统。

02

基于FPGA的数字识别的方法

通常,针对印刷体数字识别使用的算法有:基于模版匹配的识别方法、基于BP神经网络的识别方法、基于数字特征的识别方法等。下文将对这几种算法进行讨论以及比较。   

1>模版匹配法   

 模版匹配法是一种被较早应用的数字识别算法,该算法的关键是对所要识别的所有数字进行模版构建,之后将图像中的数字与所有的数字模版一一进行比较,计算出图像中数字与每个模版的相似度,根据所计算出的相似度结果进行识别。其中相似度最高的模版即为我们所要识别的结果。模版匹配法的对数字的大小、结构形状的规范化程度要求很高,数字的规范化程度对识别的准确率有着直接的影响。该算法原理较为简单,但计算复杂度过大,同时不利于FPGA的实现。   

 2>神经网络识别算法

   神经网络识别的方法是模仿动物神经网络的特征,对信息进行分布式并行处理的一种算法。神经网络识别算法具有一定的抗干扰能力,但为了保证识别的准确率,该算法需要负责并且大量的计算,来对神经网络进行训练,而过于复杂的计算不利于FPGA对该算法的实现。  

  3>数字特征识别算法   

 基于数字特征的识别算法其核心是通过对数字的形状以及结构等几何特征进行分析与统计,通过对数字特征的识别从而达到对图像中数字的识别。

03

基于数字特征算法实现数字识别

我们采用基于数字特征的算法进行数字的识别,通过图像采集模块采集到图像,进行灰度化,二值化,然后进行数字特征的提取和统计来完成对数字的识别,最终显示到数码管上,完成图像信息到数字信息的转化。

图1 0-6数字特征标线

图2  7-8数字特征标线

图3  5数字特征

数字特征信息的提取基于打印体,如上图1,图2,图3所示,以图3数字5举例,红框是数字5的水平和竖直的上下左右边界。X1在竖直方向的2/5处的水平线,x2在竖直方向的2/3处的水平线,y在水平方的1/2处的水直线。我们以此特征来统计x1,x2,y与数字5的交叉点。

以交叉统计法来区分0-9数字的特征如下表1:

表1   0-9数字特征统计表

数字识别

由于2,3,5的数字特征统计表一样,无法区分所以我们继续增加数字特征以区分2,3,5。如表2:

表2   2,3,5数字特征统计

数字识别

这样通过数字统计完全区分开数字0-9。然后利用FPGA系统搭建实时数字识别系统。

04

基于FPGA的数字识别的实现

数字识别

图4基于ov5640的FPGA实时数字识别系统

如图4所示,我们图像采集使用ov5640  500W像素摄像头,采集到的彩色RGB图像首先存入SDRAM中,然后由TFT显示控制端读出图像数据,读出RGB图像数据后,我们首先进行RGB转Ycbcr算法操作,然后对灰度图像进行阈值分割,形成二值图像。对二值数字图像进行数字识别,最终显示在数码管上。

FPGA部分源码

//------------------------------------------------------------------------

// VGA display

//--------------------------------------------------------------------------

always @(posedge TFT_VCLK or negedge rst_n) begin

if(!rst_n)

TFT_RGB <= 16'b0;

else if(hcount == 400 || vcount == 192 || vcount == 320)

TFT_RGB <= 16'hff00;

else

TFT_RGB <={o_y_8b[7:3],o_y_8b[7:2],o_y_8b[7:3]};

end

//-------------------------------------------------------------

//digital tube display

//-------------------------------------------------------------

always @(posedge TFT_VCLK or negedge rst_n) begin

if(!rst_n)

disp_data <= 32'h0;

else if((!TFT_VS_r0) && TFT_VS_r1)

case({x1_l,x1_r,x2_l,x2_r,y,x1,x2})

16'b1111_0010_0010_0010: disp_data <= {28'b0,4'h0};  //0

16'b1010_0001_0001_0001: disp_data <= {28'b0,4'h1};  //1

16'b0110_0011_0001_0001: disp_data <= {28'b0,4'h2};  //2

16'b0101_0011_0001_0001: disp_data <= {28'b0,4'h3};  //3

16'b1110_0010_0010_0001: disp_data <= {28'b0,4'h4}; //4

16'b1001_0011_0001_0001: disp_data <= {28'b0,4'h5}; //5

16'b1011_0011_0001_0010: disp_data <= {28'b0,4'h6}; //6

16'b0110_0010_0001_0001: disp_data <= {28'b0,4'h7}; //7

16'b1111_0011_0010_0010: disp_data <= {28'b0,4'h8};  //8

16'b1101_0011_0010_0001: disp_data <= {28'b0,4'h9};  //9

default: disp_data <= 32'b0;

endcase

else

disp_data <= disp_data;

End

结果展示

图5实验原图

图6数字5识别

图7数字6识别

图8数字7识别

结果分析

本实验完成了对0-9数字的单个数字识别,对于多个数字的识别,我们要进行模块分割,然后在每个模块里边再识别数字。我们可以加上语音系统来播报我们识别出来的数字,已到达更加人性化的更加实用的开发。

基于FPGA的数字识别的实现二

01

背景知识

对于FPGA识别数字的基本算法知识请查看《基于FPGA的数字识别的实现》一文,对于数字位置的实时跟踪的基本算法知识请查看《基于FPGA的实时移动目标的追踪》一文。本节将基于FPGA的目标跟踪以及统计学的特征统计来实现对数字的位置实时定位以及数字识别,不在局限于数字在屏幕中的位置,也不局限数字的大小。

02

基于FPGA的数字识别的实现

数字识别

图1基于ov5640的FPGA实时数字识别系统

如图1所示,我们图像采集使用ov5640 cmos  500W像素摄像头,将采集到的彩色RGB图像首先存入SDRAM中,然后由TFT显示控制端读出图像数据,读出RGB图像数据后,我们首先进行RGB转Ycbcr算法操作,然后对灰度图像进行阈值分割,形成二值图像,对二值数字图像进行边界追踪的基础上进行数字识别,最终将边界显示在TFT5寸屏幕上,将识别的数字信息显示在数码管上。

数字识别

图2 边界追踪数字识别的三大主要核心模块

如图2所示,以TFT屏的显示时序为基准,首先进行边界追踪,识别数字边界后,我们在边界的基础上进行统计特征的数字识别。

数字识别

图3边界追踪模块

如图3所示,hcount为列计数器,vcount为行计数器,TFT_VS_fall和TFT_VS_rise分别是帧下降沿标志和帧上升沿标志,frame_cnt为帧计数器,hcount_l和hcount_r分别是识别后数字的左右边界,vcount_l和vcount_r分别是数字的上下边界。Th_flag_fall和th_flag_rise分别是灰度图像阈值后的下降沿和上升沿标志。

数字识别

图4数字识别模块

如图4所示基本的边界信息均来自数字边界识别模块,数字识别模块主要的到数字统计学的两横一竖(x1,x2,y)与数字的交点信息,以及其他补充信息。

部分核心代码:

/*

Module name:  digital_recognition.v

Description:  digital recognition

Data:         2018/04/17

Engineer:     lipu

e-mail:       137194782@qq.com

微信公众号:   FPGA开源工作室

*/

数字识别x1 ,x2,y核心代码:

数字识别

TFT显示屏显示代码:

数字识别

数字识别与数码管显示对接代码:

数字识别

结果展示

图5实验原图

图6边界跟踪数字识别6

图7边界跟踪数字识别7

图8边界跟踪数字识别4

图9边界跟踪数字识别5

展望

基于机器视觉的识别是走向人工智能的必然之路,字符的识别就是这条路的敲门砖。本次实验的结果完成了无论数字大小,数字在屏幕中的位置均可正确识别。基于此,可以开发人脸位置识别,人脸模板匹配识别,车牌识别等现如今比较火的机器视觉,人工智能等。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分