MCU或MPU上生成AI算法,进行对嵌入式设备操控

电子说

1.3w人已加入

描述

人工智能浪潮浩浩荡荡,势不可挡。国内外巨头玩家,早已盯准了云端的超级赛道,重金部署。但随着技术的不断迭代演进,大量处理数据的方式和位置在不断变化,硬件和连接性方面也出现了新的发展趋势。

目前大部分方式是通过云端联网和数据中心来进行大规模计算,从而实现人工智能,比如整个城市的智能交通。云端具备连结多方大数据,拥有超强计算力的优势,在人工智能的发展中占据着不可替代的作用。但是真正要让人工智能走进生活,成为我们身边看得见摸得着的智能,就需要将AI从云端拉向终端。

云计算这一术语已经在大多数消费者的消费理念中占据了一席之地,边缘计算可以看做是无处不在的云计算和物联网(IoT)的延伸概念。我们可以将边缘计算看作是远离核心的移动计算。从根本上来讲,边缘计算是智能和计算从云网络中的集中式数据服务器到网络边缘硬件的移动,传感器不是在某个位置收集数据,然后将数据发送回中央服务器进行处理,而是在本地可用的硬件上对数据进行处理,只把处理结果发送到云端,以便确保信息的即时可用性并进行操作,而不需要进一步对数据加以处理。

将计算迁移到边缘具备以下几个优势,能够促进更理想的计算:

  • 能够近乎实时地处理数据

  • 处理的数据可以从各个边缘节点并行收集

  • 消除了在带宽有限的网络上发送原始数据的负担

  • 消除计算量大的原始数据对数据中心的压力

  • 降低云网络从数据中获得信息的依赖性

  • 可以帮助管理在本地处理而不是共享的敏感数据

e-AI (嵌入式人工智能) 就是在人工智能领域出现的、需要在本地终端进行计算的应用场景。相比云端智能,嵌入式人工智能要做的,是能够在本地进行实时环境感知、人机交互与决策控制。由此,一场由边缘向中心进发的革命正在酝酿、爆发,这正式边缘计算火热的根源。

瑞萨电子的e-AI技术

瑞萨电子的e-AI技术是在本公司生产的MCU或MPU上生成AI算法,运用算法在嵌入式设备上进行操控,从而使嵌入式设备进行AI操控。然而,我们需要让人工智能持续学习。很多人认为,在机器学习和算法生成时,现有价格低廉的MCU和MPU存在运算速度缓慢和内存小的缺陷,因而无法立即实现。然而,瑞萨电子的e-AI技术可以通过以下两步攻克这一难题:

(1) 算法在后台生成,而在MCU和MPU中保持下载更新最新算法; 

(2) 在MCU或MPU上加载一个特别运算电路,通过这个运算电路进行高速、低功耗的AI判别。由此,瑞萨电子可在嵌入式设备中支持AI运行。

mcu

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分