SiC碳化硅第三代半导体材料 | 耐高温绝缘材料应用方案

描述

 

       碳化硅材料主要包括单晶和陶瓷2大类,无论是作为单晶还是陶瓷,碳化硅材料目前已成为半导体、新能源汽车、光伏等三大千亿赛道的关键材料之一。

 

 

单晶方面,碳化硅作为目前发展最成熟的第三代半导体材料,可谓是近年来最火热的半导体材料。尤其是在“双碳”战略背景下,碳化硅被深度绑定新能源汽车、光伏、储能等节能减碳行业,万众瞩目。陶瓷方面,碳化硅凭借其优异的高温强度、高硬度、高弹性模量、高耐磨性、高导热性、耐腐蚀性等性能,近年来随着新能源汽车、半导体、光伏等行业的起飞而需求爆发,深深地渗入到这些新兴领域的产业链中的关键环节。
 

陶瓷方面

 

陶瓷方面,常见的陶瓷材料有碳化硅、氧化铝、氮化硅等,其中碳化硅材料因其具有极高的弹性模量、导热系数和较低的热膨胀系数,不易产生弯曲应力变形和热应变等特性,作为性能优异的结构陶瓷和高温材料,在锂电、半导体、光伏等领域得到越来越多的应用。

 

 

光刻机等半导体设备用精密部件的热门材料

陶瓷是刻蚀机、涂胶显影机、光刻机、离子注入机等半导体关键设备中的关键部件材料,其成本已占半导体设备成本10%以上。其中,碳化硅陶瓷在半导体制造的前段到后段工艺装备中都有广泛应用,例如在研磨抛光吸盘、光刻吸盘、检测吸盘、精密运动平台、刻蚀环节的高纯碳化硅部件、封装检测环节中精密运动系统等等,地位极其重要。

 

半导体

来源:Wind,梧桐树半导体整理

 

(1)在光刻机中在高端光刻机中,为实现高制程精度,需要广泛采用具有良好的功能复合性、结构稳定性、热稳定性、尺寸精度的陶瓷零部件,如E-chuck、Vacumm-chuck、Block、磁钢骨架水冷板、反射镜、导轨等。这方面,碳化硅陶瓷足以胜任。

 

(2)在刻蚀设备中在刻蚀设备中,等离子体通过物理作用和化学反应会对设备器件表面造成严重腐蚀,一方面缩短部件的使用寿命,降低设备的使用性能,另一方面腐蚀过程中产生的反应产物会出现挥发和脱落的现象,在工艺腔内产生杂质颗粒,影响腔室的洁净度。因此,刻蚀机腔体和腔体部件材料的耐等离子体刻蚀性能变得至关重要。SiC作为刻蚀机腔体材料,相较于石英,其材料本身产生的杂质污染较少,由于具有更加优异的力学性能,在等离子轰击其原子表面时,原子损失率相对较少,日本三井公司报道一种SiC复合材料作为空气刻蚀机腔体材料,具有较高的耐腐蚀性。

 

 

聚焦环部件方面,其作用是提供均衡的等离子,要求与硅晶圆有相似的电导率。以往采用的材料主要是导电硅,但是含氟等离子体会与硅反应生成易挥发的氟化硅,大大缩短其使用寿命,导致部件需要频繁更换,降低生产效率。SiC与单晶Si有相似的电导率,而且耐等离子体刻蚀性能更好,可以作为聚焦环的使用材料。

SiC刻蚀环作为半导体材料在等离子刻蚀环节中的关键耗材,其纯度要求极高。一般只能采用CVD工艺进行生长SiC厚层块体,随后经精密加工而制得,主要用于半导体刻蚀工艺的制备环节。

 

 

碳化硅陶瓷窑具——锂电材料烧结的“幕后工作者”

作为新能源分支,锂电目前有多火不用赘述。锂离子电池正极材料、负极材料和电解液的烘干、烧结和热处理等工序中,辊道窑炉是一种关键的连续生产设备,窑具是窑炉的关键配件,其工业窑炉中循环使用,用于支撑或保护被烧产品的耐火制品,受正极材料扩产带动,窑具的应用规模扩大,碳化硅陶瓷窑具以其优异的高温机械性能,耐火性能以及抗热震性能应用于陶瓷窑中,可提高窑炉生产能力,大幅度降低能耗,成为各类窑炉材料窑具材料中的理想选择。

 

 

 

 

光伏行业——电池片生产过程关键载具材料

在碳化硅陶瓷当中,碳化硅舟托成为光伏电池片生产工艺过程中关键载具材料方面的良好选择,其市场需求日益受到业界关注。目前普遍使用的石英舟托、舟盒、管件等受制于国内、国际高纯石英砂矿源限制,产能较小,且在光伏行业上游单晶炉用坩埚、中游硅片电池片载具耗材需求不断增加的背景下,高纯度石英砂存在供需紧张,价格长期高位运行的特点,石英载具作为光伏电池片生产过程中承载硅片的器件性能稳定,但是与物美价廉的耗材选型标准背道而驰。相较于石英材料,碳化硅材料制舟托、舟盒、管件制品等热稳定性能好,高温使用不变形,无有害析出污染物,作为石英制品的优良替代材料,使用寿命可达1年以上,可显著降低使用成本及维护维修停线造成的产能损失,成本优势明显,其作为载具在光伏领域的应用前景广阔。当前,世界主要经济体的光伏渗透率不断提升,在各国政策引导与市场需求的驱动下,随着光伏产业度电成本显著下降,目前光伏发电已成为全球最经济的电力能源,根据IEA预测,2020-2030年间光伏装机量将以21%的CAGR增长至接近5TW,光伏占全球电力装机比重将从9.5%提升至33.2%。

半导体

 

终端旺盛装机需求持续带动电池片需求高增,推动光伏产业碳化硅舟托及舟盒替换需求上涨,预计到2025年半导体及光伏行业用碳化硅结构陶瓷占比达62%,其中光伏行业用碳化硅结构陶瓷占比将从2022年6%上升至26%,成为最快增长领域。

 

小结

 

碳化硅材料无论是作为单晶材料还是作为陶瓷材料,均在半导体、锂电、光伏等当今最火的行业的产业链中占据了相当重要的位置,其所处的这三大行业均为千亿市场规模以上赛道,并且这些行业均正在高速成长,可预见碳化硅材料的会有美好的明天。

 发热量巨大的电子器件、芯片、MOSFET等必须与五金铸模的壳体内壁接触,以有效地实现热传递,进行散热。MOS管在电子电路中起到放大或者开关电路的作用,所以高绝缘高导热性能材料是为MOS管散热材料的首先考虑的参数。氮化硼导热绝缘片独特的制造工艺确保了材料在具备高导热率的同时,还拥有极其可靠的电绝缘性。这一特点使得高导热率绝缘片在电源器件装配领域具有得天独厚的优势。传统的电源器件装配产品常常因为过热而导致运行速度减慢问题,而氮化硼导热绝缘片正好能够解决这些难题。它通过高效的散热性能,将器件产生的热量迅速传导出去,从而确保电源器件的稳定运行,并延长其使用寿命。

半导体

以上部分资料转载“复材社”网络平台,文章用于交流学习,版权归原作者。如有侵权请告知立删。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分