RF/无线
如图1所示,射频前端芯片包括功率放大器(PA:Power Amplifier),天线开关(Switch)、滤波器(Filter)、双工器(Duplexer和Diplexer)和低噪声放大器(LNA:Low Noise Amplifier)等。
简述PA、Switch、Filter、Duplexer和Diplexer
RF滤波器包括了SAW(声表面滤波器)、BAW(体声波滤波器)、MEMS滤波器、IPD(Integrated Passive Devices)等,而双工器是包含Rx和Tx滤波器。SAW、BAW滤波器的性能(插入损耗低、Q 值高)是目前手机应用的主流滤波器。SAW 使用上限频率为2.5GHz~3GHz,BAW使用频率在 2.0GHz 以上。
对SAW来说,技术趋势是小型片式化、高频宽带化、降低插入损耗。采用更小尺寸,包括倒装(flip chip packaging)和WLP(晶圆级封装)、WLCSP(Wafer Level Chip ScalePackaging)技术正在使用,同时更高通带率、High isolation,High selectivity以及更低价格。
与 SAW 相比,BAW性能更好,成本也更高,但是当频段越来越多,甚至开始使用载波聚合的时候,就必须得用BAW技术才能解决频段间的相互干扰问题。BAW所需的制造工艺步骤是 SAW 的10倍,但因它们是在更大晶圆上制造的,每片晶圆产出的 BAW 器件也多了约4倍。即便如此,BAW的成本仍高于 SAW。随着技术的演进, BAW可能会逐步替代SAW。
在4G普及的过程中,“五模十三频”、“五模十七频”等概念成为高端手机芯片的重要标志,也成为手机厂商重要的宣传热点。这并非是简单的营销噱头,而体现了智能手机兼容不同通信制式的能力,是手机通信性能的核心竞争力指标。
手机芯片向多模方向发展以及支持频段数量指数性增加是手机射频前端模块数量快速增长的主要驱动因素。观察2G到4G射频前端解决方案的三幅示意图,可以形成两点直观感受:1,射频前端芯片数量不断增长;2,射频前端系统复杂度不断提高。
图4是2G功能手机(Feature Phone)的典型射频前端解决方案,主要的射频前端芯片有:1个功率放大器模块(PA),2个发射低通滤波器(LPF),2个接收滤波器(Saw Filter),1个SP6T开关。其中,功率放大器、LPF Filter和SP6T Switch被集成到一颗PA Module里。
图5是3G手机(WCDMA)的典型射频前端解决方案,主要的射频前端芯片在2G方案的基础上,增加了2组PA Module和4组双工器(Duplexer)。
图6是4G LTE手机典型射频前端解决方案,支持“五模十二频”,可以看到,在4G时代,射频前端芯片不仅在数量上产生指数级增长,在设计复杂度上更是大大提高。主要的射频前端芯片有:1个集成频段选择开关的多模功率放大器(MMPA),4个PA Module,3个Duplexer/Multiplexer,6个接收/发射Filter,1个用于TD-LTE模式的S1P2开关,分别用于高频、低频和分集电路的3个天线开关模块,1个接收分集滤波器。
表1整理了2G至4G射频前端解决方案中器件的数量,可以看到,4G方案的射频前端芯片数量相比2G方案和3G方案有了明显的增长。印证了我们对手机射频前端芯片的数量随着支持频段数量的增加而指数级递增的推论。
从更为直观的角度观察,图7给出了手机射频前端模块从2G到4G演进过程中价格和出货量的变化数据。目前,高端4G智能手机中射频前端模块的价格合计已经达到16.25美元,中高端4G产品也有7.25美元。相比2G手机的0.80美元和3G手机的3.25美元,射频前端模块的单位产值有了几倍、几十倍的提高,并且,随着4G通信网络渗透率的不断提高,高端4G手机的出货量依然在不断攀升中。
全部0条评论
快来发表一下你的评论吧 !