基于fft算法的MATLAB仿真

可编程逻辑

1367人已加入

描述

该方法易于在FPGA上实现相关算法,比直接用相乘来得简单,而且但相关点数越多计算量相对而言比直接求解减少

仿真程序如下:

%步骤:

%(1) x,y都在高位补M(数据长度)个零

%(2) 求2M点FFT,X(K),Y(K)

%(3) 求乘积,Rxy(K)=X(K)*Y‘(K) 注:Y(K)取共轭

%(4) 求2M点IFFT, rxy= IFFT(Rxy(K))

clc;close all;clear all;

x1=load(‘D:My DocumentsMATLABdens_flow_ejieRF1.txt’); %导入数据

y1=load(‘D:My DocumentsMATLABdens_flow_ejieRF2.txt’); %导入数据

xcorr_size=512; %定义互相关的长度

xk=zeros(1,2*xcorr_size);

yk=zeros(1,2*xcorr_size);

label_x=zeros(1,2*xcorr_size);

velo= zeros(1,2*xcorr_size);

xk(1:xcorr_size)=x1(1:xcorr_size); %以下为对比实验,将用fft相关算法和XCORR实现进行对比,发现不用使用反折方法也能实现相关

yk(1:xcorr_size)=y1(1:xcorr_size); %实现效果非常好

XK_FFT=fft(xk);

YK_FFT=conj(fft(yk)); %求共轭,只是在复数乘法之前加了一个 取共轭操作

ZK= XK_FFT.*YK_FFT;

rxy=fftshift(ifft(ZK)); %用取实部的操作一样

figure;

plot(rxy);

title(‘fft算法实现线性相关’);

rxy2=xcorr(xk(1:xcorr_size),yk(1:xcorr_size));

figure;

plot(rxy2);

title(‘matlab自带相关函数xcorr结果’);

MATLAB仿真

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分