高维空间逼近最近邻评测

电子说

1.3w人已加入

描述

最近邻方法是机器学习中一个非常流行的方法,它的原理很容易理解:邻近的数据点是相似的数据点,更可能属于同一分类。然而,在高维空间中快速地应用最近邻方法,却是非常有挑战性的工作。

全球最大的流媒体音乐服务商Spotify需要向上面的海量用户推荐音乐,其中就用到了最近邻方法。也就是在高维空间、大型数据集上应用最近邻方法。

由于维度高、数据规模大,直接应用最近邻方法并不可行,因此,最佳实践是使用逼近方法搜索最近邻。这方面有不少开源库,比如Spotify开源的Annoy库。Annoy库的作者Erik Bernhardsson在开发Annoy的过程中发现,尽管有成百上千的使用逼近方法搜索最近邻的论文,却很少能找到实践方面的比较。因此,Erik开发了ANN-benchmarks,用来评测逼近最近邻(approximate nearest neighbor,ANN)算法。

评估的实现

Annoy Spotify自家的C++库(提供Python绑定)。Annoy最突出的特性是支持使用静态索引文件,这意味着不同进程可以共享索引。

FLANN 加拿大英属哥伦比亚大学出品的C++库,提供C、MATLAB、Python、Ruby绑定。

scikit-learn 知名的Python机器学习库scikit-learn提供了LSHForest、KDTree、BallTree实现。

PANNS 纯Python实现。已“退休”,作者建议使用MRPT。

NearPy 纯Python实现。基于局部敏感哈希(Locality-sensitive hashing,简称LSH,一种降维方法)。

KGraph C++库,提供Python绑定。基于图(graph)算法。

NMSLIB (Non-Metric Space Library) C++库,提供Python绑定,并且支持通过Java或其他任何支持Apache Thrift协议的语言查询。提供了SWGraph、HNSW、BallTree、MPLSH实现。

hnswlib(NMSLIB项目的一部分) 相比当前NMSLIB版本,hnswlib内存占用更少。

RPForest 纯Python实现。主要特性是不需要在模型中储存所有索引的向量。

FAISS Facebook出品的C++库,提供可选的GPU支持(基于CUDA)和Python绑定。包含支持搜寻任意大小向量的算法(甚至包括可能无法在RAM中容纳的向量)。

DolphinnPy 纯Python实现。基于超平面局部敏感哈希算法。

Datasketch 纯Python实现。基于MinHash局部敏感哈希算法。

PyNNDescent 纯Python实现。基于k-近邻图构造(k-neighbor-graph construction)。

MRPT C++库,提供Python绑定。基于稀疏随机投影(sparse random projection)和投票(voting)。

NGT: C++库,提供了Python、Go绑定。提供了PANNG实现。

数据集

ANN-benchmarks提供了一些预先处理好的数据集。

机器学习

结果

Erik提供了在AWS EC2机器(c5.4xlarge)上运行测试的结果——跑了好几天才跑完,费用约100美元。

机器学习

glove-100-angular

机器学习

sift-128-euclidean

机器学习

fashion-mnist-784-euclidean

机器学习

gist-960-euclidean

机器学习

nytimes-256-angular

机器学习

glove-25-angular

从以上评测可以看出(越靠上、靠右,成绩越好),几乎在所有数据集上,排名前五的实现为:

HNSW(NMSLIB的低内存占用版本),比Annoy快10倍。

KGraph位于第二,和HNSW的差距不算很大。和HNSW一样,KGraph也是基于图(graph)的算法。

SW-graph,源自NWSLIB的另一个基于图的算法。

FAISS-IVF,源自Facebook的FAISS。

Annoy

在“评估的实现”一节中,我们看到,有不少使用局部敏感哈希(LSH)的库。这些库的表现都不是很好。在之前进行的一次评测中,FALCONN表现非常好(唯一表现优良的使用局部敏感哈希的库)。但是这次评测中,FALCONN看上去退步得很厉害——原因未明。

从这次评测来看,基于图的算法是当前最先进的算法(名列三甲的算法全都基于图),特别是HNSW表现突出。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分