不平衡类别的机器学习

人工智能

636人已加入

描述

前一项后一项 本作品采用知识共享"署名-非商业使用-禁止演绎 2.5 中国大陆"许可协议授权 订阅最新更新! 不平衡类别的机器学习 作者:燕继坤 提交人:yanjk (2004年10月28日 周四) 类型:book chapter (Chinese) 引用网址:

赞助本站

前一项 后一项

本作品采用知识共享 "署名-非商业使用-禁止演绎 2.5 中国大陆" 许可协议授权

 订阅最新更新!

不平衡类别的机器学习

作者:燕继坤
提交人:yanjk (2004年10月28日 周四)
类型:book chapter (Chinese)
引用网址:
注释:全文被作者撤回,如感兴趣,请直接与作者联系:yan_jk@sina.com

摘要/内容: 传统机器学习中通常隐含地假设所研究的问题是类别平衡的,很多应用并不满足这个假设,这些应用中往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类(多数类)的平凡分类器。不平衡类别是妨碍机器学习被广泛使用的原因之一,近年来这个问题才引起关注。

为了寻找对不平衡类别有很好适应性的学习算法,以精度的几何平均(GMA)作为分类器的设计目标。主要用UCI 机器学习数据集中的一些数据进行实验。

关键词: 机器学习,不平衡类别,综合学习,SVM

全文/附件: TXT下载
评论/打分: 给资料打分 10.00 (1票) / 发表评论 / 前一项  / 后一项

推荐阅读:
Inverse Eigenvalue… [章节]
Numerical methods for… [期刊]
规范场论(春季) [讲义]
一个新的足球烯家族 [书籍]
q-deformations of quantum … [期刊]

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分