英特尔与百度深化人工智能合作,打造全新AI摄像头

电子说

1.3w人已加入

描述

英特尔与百度深化人工智能合作,打造全新AI摄像头、基于FPGA的工作负载加速即服务并优化PaddlePaddle深度学习框架。

在今日举行的百度AI开发者大会Baidu Create上,英特尔人工智能事业部副总裁Gadi Singer介绍了英特尔与百度在人工智能领域的一系列合作进展,包括英特尔Movidius视觉处理器(VPU)支持百度Xeye智能零售摄像头产品,英特尔FPGA助力百度计划推出的工作负载加速即服务,以及基于英特尔至强可扩展处理器平台优化的PaddlePaddle深度学习框架。

英特尔人工智能事业部副总裁兼人工智能架构总经理Gadi Singer出席百度AI开发者大会并发表演讲

“从赋能终端设备智能化,基于至强可扩展处理器的大规模数据中心,到利用英特尔FPGA加速不同工作负载,再到让PaddlePaddle开发者更简便地进行跨平台编程,百度充分利用了英特尔的产品和技术专长,让人工智能技术的进步真正造福大众。”

——Gadi Singer,英特尔人工智能事业部副总裁兼人工智能架构总经理

智能摄像头:百度Xeye摄像头采用英特尔®Movidius™ Myriad 2 VPU,为零售业提供高性能、低功耗的视觉智能。百度领先的机器学习算法与英特尔定制化VPU解决方案强强联合,让此款摄像头能够分析物体和手势,识别人体,从而为零售行业用户提供个性化的购物体验。

FPGA:百度正在开发基于英特尔最新FPGA技术的异构计算平台,这一技术将极大地提升加速性能和能效,灵活实现各类数据中心工作负载的加速,以及赋能百度云上的工作负载加速即服务。

PaddlePaddle更新:百度对PaddlePaddle在英特尔至强可扩展处理器上的性能进行了优化,开发者与数据科学家可以使用支持全球数据中心和云计算的硬件来进一步改进AI算法。

英特尔对PaddlePaddle的优化涵盖计算、内存、架构、通信等不同层面,例如:

通过AVX Intrinsics函数,BLAS库(例如MKL, OpenBLAS)或定制CPU函数优化数字运算的效率

通过MKL-DNN(面向深度神经网络的英特尔数学核心函数库)优化CNN(卷积神经网络)

此外,英特尔和百度还将继续探索和研究,将PaddlePaddle与英特尔nGraph,这一面向各种设备和框架的DNN模型(深度神经网络模型)编译器整合。今年3月,英特尔开源了nGraph。在其支持下,数据科学家可专注于数据科学研发,而无需担心如何将 DNN 模型部署到各种不同的硬件平台做高效训练和运行。

英特尔和Intel标识是英特尔公司在美国和其他国家(地区)的商标。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分