适用于高速UWB通信系统的功率放大器的设计

描述

1 、引言

超宽带(Ultra Wideband-简称UWB)技术是一种利用ns 级宽度极窄脉冲作载体的无线传输技术,其射频(RF)传输带宽通常超过1GHz。因此,这种超宽带传输方式相对常规窄带传输方式有低功率谱、低截获、抗干扰能力强、可高速数据传输等优点,用途非常广泛,在精确定位、雷达、无线检测、无线通信等诸多方面都有重要应用。

UWB 技术在短距离高速数据传输应用上虽然优势明显。

然而无论是单脉冲UWB 信号还是多脉冲UWB 信号,其发射功率强度有限, 不能很好的抵抗突发脉冲的干扰和有效的远距离通信。为了实现有效的通信和适应在某些特殊应用的场合,比如军事,矿井通信,电磁环境恶劣情况下通信等等,这时需要突破FCC 关于UWB 信号强度规范的限制,提高UWB 信号的发射功率,满足系统特定的通信要求。这就需要在UWB 发射机加置功率放大器来有效放大UWB 信号。

2 、UWB 高速(100M)数据传输系统

UWB 短距离高速数据传输系统可以实现从PC (个人计算机)到PC 的10m 范围内的高速数据传输,其发射部分简化框图结构如图1 所示:

芯片

PC 机上的待传输数据通过USB 接口电路传送到基带处理电路,经过卷积,交织,编帧,调制等一系列处理后产生100Mbps的基带码元信号, 此基带码元信号用以控制射频发射机的振荡器工作状态,从而产生高速的UWB 信号,这样产生的UWB 信号为高斯包络正余弦脉冲,它的时域表达式为式(1)所示:

芯片

振荡器产生的UWB 信号可以满足一般情况下的高速(100M)数据传输,传输距离一般为3m,但为了满足特定情况下的通信需要或增加传输距离,就需要在振荡器后加置功率放大器来有效放大UWB 信号,加置功放后的最大传输距离可以达到10m。

3 UWB 功率放大器的电路设计与实现

微波单片集成电路(MMIC)是用半导体工艺把有源器件、无源器件和微波传输线、互连线等全部制作在一片砷化钾或硅片上而构成的集成电路。MMIC 工作频率可以从1GHz 到100GHz以上,最适宜应用于分米波的高频端,厘米波和毫米波(包括亚毫米波)的频带范围。相对于混合集成电路的优势包括:集成度高,体积小,质量轻,高可靠性,低寄生效应,更大的带宽和更高的工作频率。广泛的应用于定位接收机、灵巧武器、雷达、电子对抗和通信等前端电路。结合UWB 高速数据传输系统的特点,我们采用MMIC 芯片实现UWB 信号功率放大器的设计与实现。要求工作频段在3~4GHz 左右, 其工作带宽要求大于500MHz,要求频带内增益平坦度平滑,电路工作性能稳定。其功率增益的要求为20-30dB 左右。具体电路实现上我们分别采用两种芯片TC3331 和HMC327 来实现。

3.1 基于TC3331 的电路设计

要设计宽带功放,首先要有合适的功放管,它也是设计中一个最基础的环节, 同时关系到后续电路设计能否很好的满足系统的性能要求。设计采用TRANSCOM 公司的PHEMT MMIC 功放单片TC3331,TC3331 是两级的MMIC 功率放大器。工作频段为3.3~3.8GHz(-3dB 带宽),可以实现带宽500MHz, 输出功率30dBm, 功率增益30dB, 工作电压一般为7V、电流为700mA。输入驻波比VWSR 最大值为2:1。具有低成本、高性能的优点。

3.1.1 电路原理图

芯片

电路利用芯片MAX881R 实现直流偏置电路。基于MMIC器件的功率放大器设计中,直流偏置电路不仅要隔离射频信号,而且能提供放大器正常工作时的时序偏置电压和电流。直流电源提供正确的电压值(约3.7V)给MAX881R。芯片MAX881R 的7 脚OUT 一般输出为-2V, 但是该输出值是可以通过6 脚外接电路调节的,通过电阻R3 和R4 与6 脚接合在一起进行电路分压,此时OUT 输出的值为-1V,以满足TC3331 直流偏置Vg=-1V的供电要求。调节的计算公式分别如(3)式和(4)式所示:

因为TC3331 要求Vg 为-1V,所以通过(3)式和(4)式可计算得。IRF9540N 由4 脚驱动控制,当无电源供给时(VCC=0 V),MAX881R 芯片4 脚处于高电平, 控制IRF9540N 工作于截止状态, 源极无电压输出; 当有正确电源(VCC≠0)供给时,经过一段时间MAX881R 达到稳定后,4 脚输出变为低电平来控制IRF9540N 导通正常工作, 提供给功放管TC3331 正常的漏极电压,使功放管正常工作。

3.1.2 测试结果

芯片

对实际放大器电路进行测试, 测试输入信号源采用中心频率为3.407GHz,速率为100MHz 的UWB 信号。测试的结果如图3,图4 所示。图3,图4 是对UWB 信号测试的结果对照图,信号的功率从-5.11dBm 增加到22.45dBm,增益约27.5dB,小信号增益已经接近功放管的理想放大增益值30dB。可以看出图4 中UWB 信号的频谱比图3 放大后UWB 信号的频谱有更平滑的信号频谱特性,说明UWB 信号的波形失真小,该放大器的线性度高,可以满足系统的设计要求。

芯片

3.2 基于HMC327 的电路设计

系统中UWB 信号的理论中心频率是3.5GHz, 功放的工作频带要求是500MHz, 基于TC3331 的UWB 超宽带功率放大器可以满足放大UWB 信号的要求, 但其工作频段为3.3G—3.8GHz,工作带宽稍显不足。如果达不到工作带宽要求,将会导致UWB 信号传输效果变差,在接收端产生数据误判,影响通信质量。所以进一步加宽工作频带是必要的。

想要加宽工作带宽, 最可行的办法就是选择高性能的功放芯片,经过比较,决定采用Hittite 公司的HMC327 芯片来解决这个问题。相比较TC3331 而言,它的工作带宽是3G—4GHz,可以满足系统工作带宽的要求,而且它的电路结构相对简单,无需外加偏置电路。但它的典型增益只有21dB,小于TC3331 的30dB的典型增益。

3.2.1 电路原理图

图5 HMC327 功放电路原理图从图5 可以看出,UWB 信号通过3 脚输入HMC327 进行功率放大, 电路采用双电源供电, 电源Vct1=Vs=5V, 分别通过HMC327 的1 脚和8 脚供电, 芯片的5 脚与6 脚作为电路的输出端输出放大了的UWB 信号。

芯片

3.2.2 测试结果

图6 与图7 是对UWB 信号放大的前后对照测试图, 可以看到UWB 窄脉冲信号的功率从-9.58dBm 增加到8.34dBm,增益为17.92 个dB。考虑到实际测试中的线损约有2-3 个dB。实际增益有20dB,工作频带大于500MHz,有效的放大了UWB 信号,可以有效提高传输距离。

芯片

芯片

4 结论

本文介绍了超宽带功率放大器(在给定失真率条件下,能产生最大功率输出以驱动某一负载(例如扬声器)的放大器)的设计与实现。提出了两种行之有效的电路, 基于芯片TC3331 的电路能够充分放大UWB信号但工作带宽有限且电路结构相对复杂。由此提出了另一种基于芯片HMC327 的实现电路, 其工作带宽较宽, 电路结构简单, 但增益较TC3331 小, 这就使传输距离和抗干扰性相比TC3331 较差。总体而言,两种电路可以根据不同需要,分别应用在不同的场合来放大UWB 信号,从而满足UWB 短距离高速数据传输系统的需求。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分