如何实现图像识别?为什么要入局图像识别?

描述

无论怎样,我们不得不承认,在我们所处的当今时代,技术发展对现代生活有着决定性的影响。但令人喜忧参半的是,科技变化如此之快,我们几乎无法跟上它的脚步,更不用说预测未来了。 其中发展最快速,影响力最大和最吸引人的技术进步之一就是图像识别。

什么是图像识别?

图像识别是计算机视觉的机制之一,而计算机视觉是人工智能的一个分支。人工智能(也称AI)是一种能够模仿人类特征并胜任通常需要人类智能才能完成的任务的计算机系统。

为了让AI更有说服力,我们需要所谓的“计算机视觉”。计算机视觉是计算机获取、处理和分析主要来自视觉提示或热传感器、超声波等类似来源的数据的技术。

简而言之,计算机视觉使得机器能够“看”事物——甚至包括人类无法看到的事物。例如,位于匹兹堡(美国)的卡内基梅隆大学正致力于研究名为“呼吸凸轮”的计算机视觉应用。该应用配备了四个云连接摄像头,可以让用户监控和记录空气污染,甚至可以追溯到污染的源头,它“看到”了空气质量。

如何实现图像识别?

目前,深度学习是最有可能让机器实现“看”的能力的技术。简单地说,深度学习就是一种机器学习框架,通过模仿人类的神经元系统,为计算机提供自主学习能力。因此,计算机可以准确识别图片中的内容,而无需根据指令安装手动编码的软件——但它需要大量数据才能完成识别。

因此,全世界都在致力于开发大量数据,其中最典型的例子就是ImageNet和PASCAL数据集。经过多年的努力,这些庞大且免费的数据集包含数百万张图像,每张图像都标记有图像内容相关的关键字。

为什么要入局图像识别?

我们的猜测是图像识别市场潜力巨大。

图像识别是一个非常抽象的领域。但是,当应用于具体情境时,其改变企业的潜力是无可辩驳的。让我们看看各个行业和企业流程中图像识别的几种潜在应用:

❈ 医疗保健:图像识别最突出的能力之一是协助创建增强现实(AR)——一种“将计算机生成的图像叠加在用户对现实世界的视角之上”的技术。如果给人工智能提供AR技术和包含疾病视觉提示的数据集,你将有一个永生难忘的医疗助理。 有了它,医生就可以在检查期间获得患者伤口的的实时详细诊断建议或医疗文件。

❈ 教育:图像识别可以让有学习困难或身体残疾的学生以他们能够感知的形式获得所需的教育。计算机视觉支持的应用程序可以提供文本到语音和图像到语音功能,帮助视力受损或有阅读障碍的学生“阅读”所提供的内容。

❈ 食品和饮料:通过使用图像识别,智能手机上的简单应用可以获得Instagram和Facebook上图像的视觉提示,分析它们并提供实时数据。 例如,根据这些照片,该应用程序可以告诉你新加坡的某家咖啡馆是您家人和朋友经常去的地方,还是一个举办疯狂聚会的场所。通过这种方式,用户可以一目了然地获得本地定制方案,而餐厅也可以有效地接触到目标受众。

❈ 电子商务:想象一个用户在街上看到他们想买的东西,但他们找不到人问在哪里可以买到它,因此他拍了一张照片。然后,该用户将其上传到配备图像识别技术的电子商务网站。算法本身可以“看”图片,扫描数百万个可选项,并推荐一个看起来与客户所寻求的相同,至少是最接近的选项。现在,我们的工程师正在研发人工智能视觉搜索工具,以利用拥有数千种产品的大型电子商务数据集,扩大电商体验。

❈ 企业流程管理:先进的图像识别系统还可以在企业经营时协助识别。例如,机器可以进行面部识别,这将取代传统身份证,来确定某人是否被授予执行某项任务的权利:如访问文件存储系统,参加会议或检查工作。然而,我们不得不承认,由于个人情感、化妆等因素的影响,“看”和“识别”人脸比识别物体要复杂得多。

图像识别技术发展面临哪些障碍?

图像识别并非一个新领域,但放眼全局,它仍处于早期阶段。就像任何一个典型的成长中少年一样,在适应现实世界时也存在问题。

还记得“80%的组织表示他们在生产中应用了AI应用程序”吗?在这些应用了人工智能技术的公司中,约有33%的公司表示采用人工智能技术的最大障碍是不稳定性 - 不成熟且未经证实。34%认为很难招聘到合格的工程师,40%表示信息技术基础设施建设阻碍了人工智能技术的引进,且很容易对公司的财务造成不利影响。此外,资金也是一个重要影响因素。由于用于数据流编程的开源软件库越来越多,机器学习爱好者能够以极低的成本进行研究和学习。然而,并非所有问题都能得到解决,因为并非一切都是已知的。为了实现产品创意,要平衡预算,公司仍有很长的路要走。

总而言之,图像识别是计算机视觉时代到来的早期征兆。无论它将如何应用或将应用于哪些行业,图像识别技术永远不可能孤立发展。只有通过访问更多图片、实时数据,花费更多的时间和精力才能使其更加强大。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分