基于实时操作系统μc/OS-II与SPCE061的嵌入式多传感器测控系统

描述

1  引言

随着嵌入式系统的广泛应用,原来单一传感器的嵌入式系统逐渐向嵌入式多传感器系统发展。由此提出了多传感器任务调度分配的问题。本文移植典型的实时嵌入式操作系统μc/OS-II到SPCE061高性能处理器平台,结合工程项目对于温度湿度氧浓度的要求,构建了实时嵌入式多传感器测控系统。

2  系统硬件设计

2.1 单片机系统设计

系统硬件电路原理框图如图1所示,主要由SPCE061A单片机、温湿度传感器、氧浓度度传感器、LCD显示电路、键盘电路、RS232通信电路、时钟电路等组成。SPCE061A是一款基于μ'nSP内核的16位单片机。

操作系统

图1 系统硬件电路原理框图

2.2 传感器电路设计

温度检测电路选用Dalls公司生产的三线式数字温度传感器DS18B20。该器件只有3个引脚,不需要外部元件,一条数据线进行通信。该电路的检测温度范围设计为0~+50℃;精度为0.5℃;用9bit数字量来表示温度;每次将温度转换成数字量需200ms。在单总线工作方式下,允许一条信号线上挂接多个DS18B20,DS18B20都有唯一的ROM代码。在多点温度测控系统中,ROM代码是识别和操作DS18B20的基础;无论读取还是选择对某一个传感器进行操作,SPCE061A必须发送64位ROM代码。

本系统用3块DS18B20来实现对环境温度的检测,保证在被测环境范围内,温度分布均匀,测量更加准确,使用时将DS18B20放置在被测环境的不同位置。获得温度信息时,先由SPCE061A的IOB15脚发送一个1ms的复位脉冲,以使DS18B20复位后将向SPCE061A 发送一个回应脉冲,SPCE061A接到回应脉冲后将发送读DS18B20序列号的读ROM命令,以分别读取三个DS18B20的序列号;然后,SPCE061A再发出定位命令以选择在线的DS1820并进行温度转换。当温度转换完成后,SPCE061A的IOB15脚会发送DS1820的存储命令,从而完成温度信息数据的转换和读取。

2路氧浓度检测选用 DW-02型氧浓度传感器,主要特点是体积小、响应快、线性好、温漂小等特点,稳定。主要技术指标: 响应时间≤30秒(满量程的90%) ;测量范围0~50% O2 ;温度系数>0.003% O2/℃ ;线性误差+0.2%~-0.1% O2 ;使用温度范围-20℃~+50℃ ;输出电流1.1mA+15% 。 本系统测定的含氧量不得低于4.5%。

由于是冬季,当储藏室环境温度高于14℃或湿度大于95%RH、或氧浓度低于4.5%设定值时,不能直接将冷空气送入储藏室,必须将室外空气加热到12℃送入,否则,会造成红薯受冷变质。三个参数中,最主要的是温度值,然后是湿度。继电器电路的工作情况如表1所示。

操作系统

表1 继电器控制电路工作情况

2.3 键盘、显示电路及通信接口设计

系统键盘电路由3根线连接至SPCE061A的IOA0~IOA2组成,它们分别是功能键,增加键,减少键,用来实现温、湿度氧浓度的上、下限及控制时间的设置功能。测控仪采用HT1621驱动128段LCD显示器,用于显示现场的温、湿度值、O2浓度以及故障和报警状态。HT1621是一个128(32×4)段、内存映射、多功能、I2C接口的LCD驱动器。

3  软件设计

3.1 系统任务分配

为了充分发挥操作系统在任务调度、任务管理、任务通信、时间管理和内存管理等方面的优势,首先必须根据需要实现的功能,合理的划分任务和分配任务的优先级。按温湿度测控系统所要求实现的功能,将整个系统划分为并行存在的任务层和中断程序。μC/OS-II嵌入式实时操作系统中的任务状态转换如图2所示。

操作系统

图2 μC/OS-II任务状态转换示意图

多任务系统在运行时每个任务好像独立占用CPU一样,因此系统必须为每个任务开辟一块内存空间作为该任务的任务堆栈。该堆栈的作用是保存任务被切换前时CPU各寄存器的值以及系统堆栈的数据。进行任务切换的步骤如下:①将当前任务CPU所有的寄存器压栈;②将CPU系统堆栈的数据全部拷贝到当前任务的任务堆栈中;③ 得到下一个处于运行态优先级最高的任务的任务堆栈的指针;④ 恢复下一个任务的CPU寄存器的值;⑤ 恢复下一个任务的系统堆栈中的数据;⑥ 通过中断返回指令或函数返回指令,间接修改PC寄存器的值来进行任务切换。

任务切换方法:凌阳SPACE061A单片机有R1-R5 五个通用寄存器,还有1个SR(CPU状态寄存器),再加上PC,总共有7个CPU内部寄存器在任务切换时需要保存。μC/OS-II系统调用OSCtxSw( )来实现任务的切换。在实际系统中,每个任务都是无限循环的,分别实现某一特定的功能,由μC/OS-II内核来进行调度。系统监视任务主要完成系统可靠性的监管;数据采集任务主要完成温度湿度氧浓度的检测和A/D转换;数据处理任务主要完成采集数据和设定数据的比较判定;数据输出任务主要完成数据输出给LCD、通过RS232传输给主机、以及输出控制信号给继电器电路,完成通风、加热、加湿等功能;显示任务主要完成温度湿度氧浓度参数的显示。系统主程序任务流程图如图3所示。

操作系统

图3 系统主程序任务流程图

3.2 μc/OS-II的移植

μC/OS-II是一种专门为微控制器设计的抢占式实时多任务操作系统,它以源代码的形式给出。其内核主要提供进程管理、时间管理、内存管理等服务。系统最多支持56个任务,每个任务均有一个独有的优先级。

μC/OS-II的软件体系结构如图4所示。从图4中可以看到,如果要使用μC/OS-II, 必须为其编写OS_CPU.H、OS_CPU_C.C、OS_CPU_A.ASM三个文件。这三个文件是与芯片的硬件特性有关的,它们主要提供任务切换与系统时钟的功能。其它文件用C写成,它们为系统提供任务管理、任务之间通信、时间管理以及内存管理等功能。

操作系统

图4  μC/OS-II 软件体系结构示意图

μC/OS-II系统时钟:以凌阳SPCE061A单片机的TMB2时基信号作为系统时钟,每经历一个时钟节拍的时间将产生一次中断,在中断服务子程序中会调用OSTickISR()函数。

移植工作的主要内容:用#define 设置一个常量值(OS_CPU.H);声明10个数据类型(OS_CPU.H); 用#define 声明3个宏(OS_CPU.H);用C语言编写6个简单的函数(OS_CPU_C.C);编写4个汇编语言函数(OS_CPU_A.ASM)。

4 结论

μC/OS-II RTOS是当今嵌入式应用的热点之一,应用RTOS提高了测控系统系统的可靠性、实时性,降低了研发周期。本文基于μC/OS-II构建的测控系统应用在漯河农业局2000万公斤红薯储藏保鲜工程项目中,完全达到了设计的控制指标:温度10-14℃±0.5℃ ,湿度80—95%RH±2%,氧浓度≮4.5%。降低了红薯因为温度湿度氧浓度不正常造成的变质,完好率100%,与不使用本系统的仓储对比减少损耗25%,约500万公斤,直接经济效益500多万元,同时也取得了较好的社会效益。经试验,温度测定范围可以达到-20-85℃±0.5℃;湿度20—98%RH±2%;氧浓度≮1.5%。所以,该测控系统具有较广的应用前景。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分