茫宇宙自古是最令人类产生无限遐思的地方,宇宙的庞大至今仍然让一般人难以想象。作为我们全部能量、给予我们全部生命基础的太阳,相对于我们感性的理解能力而言已经是庞大无比,可是它同我们如今已经观测到的宇宙相比又不过是沧海一粟。自古,脚下一望无际的大地,是人们感觉平坦、厚重、坚实又可靠的地方。宇宙科学就是一步一步地超越人们的这种踏实感的历史,每一个新发现都伴随着人们的惊奇和难以置信之感,几乎每一次难题的解决,都会从相关证据中牵引出更富挑战性的新难题。为获得这些知识,人类经历了几个世纪的努力,每一个成就的取得都是继续进步的阶梯,每一个难题的发现又都是对智力的挑战……宇宙科学的发展历程既充满着理性和逻辑的魅力,又为人类留下了无尽的想象空间。更多的人渴望探知宇宙的奥秘,然而星历表厚重而不直观,简易星图由于天体运动的因素必须在指定时间进行观测;望远镜手工调整非常繁琐;拍摄不便。
为了解决上述问题而开发本系统。它的主要特点如下:通过计算,在屏幕上显示出当时当地星图,观测者无需携带天文资料,在屏幕上将观测内容实时显示出来,使观测者无须忍受长时间单眼观测的视觉疲劳,同时提高了观测效果;可对观测图像进行实时处理;可非常方便地拍摄、保存观测结果;可对结果进行一些图像处理,增强可辨性,系统自动记录观测日志,方便整理观测资料。
1 嵌入式开发平台介绍
本系统采用深圳亿道电子开发的一套基于IntelXScale PXA270处理器的Liod嵌入式开发平台。Liod开发平台得名手亿道电子的理念“Leading is our du-ty”,是一套功能强大的嵌入式开发平台,主频高达520 MHz,支持Intel Wireless MMX及Step Speed技术,超低功耗,超高性价比。核心板(XSBase270-Core)+底板设计(XSBase270-DVK-Ⅱ),扩展更灵活,应用更丰富。同时具有完善的功能接口,具有完善的Win CE/Linux双操作系统支持。本系统主要用到LCD、触摸屏、全功能串口等。
2 系统硬件设计
移动天文观测系统以Liod板为主控板,在此基础上扩展了相关电路,制成一块附属板,整体硬件框图如图1所示。
在本系统中,XScale与附属板通过串口相互通信,附属板与GPS模块、指南针模块的通信也使用串口,因此需要对附属板上的单片机串口进行复用,以实现所需功能。
使用CD4053模拟开关来实现串口复用功能,通过单片机的控制引脚切换不同的串口信号。
GPS采用了Ho1ux GR-85接收模块,具有快速追踪定位12颗卫星的能力,数据更新速率为1 Hz。GPS模块用来得到当地经纬度及准确时间的信息。
数字指南针采用了周立功ZNJV2模块,磁场测量范围为50 A/m,机首方向显示分辨率为2°,机首方向精度为3°,补偿后精度可达到0.5°,数字指南针模块用于安放望远镜时准确指向。
温度传感器采用DALLAS的DS18B20芯片,其分辨率为0.062 5℃,精度为0.5℃。温度传感器测量大气温度,用于计算大气折射率。
动力机构采用廉价云台机构,其内部为匀速交流同步电机,通过控制电机转动时间长短控制其所转角度。
3 天体视位置计算算法
地球上的观测者至天体的空间距离。不同类型的天体距离远近相差十分悬殊,测量的方法也各不相同。 ①太阳系内的天体是最近的一类天体,可用三角测量法测定月球和行星的周日地平视差;并根据天体力学理论进而求得太阳视差。也可用向月球或大行星发射无线电脉冲或向月球发射激光,然后接收从它们表面反射的回波,记录电波往返时刻而直接推算天体距离。 ②对于太阳系外的较近天体,三角视差法只对离太阳 100 秒差距范围以内的恒星适用。更远的恒星三角视差太小,无法测定,要用其他方法间接测定其距离。但是这些方法显然不能满足应用的需要。这里实现的方法是将天体的运动简化为数学模型,通过对数学模型中相对固定的参数进行运算,最终得出天体的位置,通过实验比对验证了这种方法的准确性和高效性。
星表就是通常所说的恒星坐标表,它由天体的视位置经过一系列的换算而得到星表历元平位置,在星表中载有恒星的赤道平坐标,坐标的周年变化和恒星的白行等。
FK5是由德国海德堡天文所编制的近年来人们普遍使用的一种绝对星表。目前,这种由星表求解天体视位置的方法已被广泛用于求解天文三角形中。
从FK5星表出发,经过与编制星表相反的步骤来求天体的视位置,通过对影响恒星视位置的各种因素,如大气折射、视差、光行差、岁差、章动、自行等误差的分析,给出计算恒星视位置的数学模型,其基本流程图如图3所示。
按照以上算法编写出相关函数库,主程序将相关变量如输入观测地点经纬度、欲观测星体等数据即可计算出星体视位置。FK5星表以文件形式存放。
4 视频数据采集及显示
图像数据的显示可以通过直接写屏来实现。Linux工作在保护模式下,用户态进程是无法直接使用显卡:BIOS里提供的中断调用来实现直接写屏,故Linux抽象出FrameBuffer。这个设备来供用户态进程实现直接写屏。 FrameBtlffer主要是根据VESA标准实现的,所以只能实现最简单的功能。
直接写屏的过程:
(1)打开一个FrameBuffer设备;
(2)通过调用mmap()把显卡的物理内存空间映射到用户空间;
(3)直接写内存。
由于直接写屏是直接对显存进行修改,同QT对程序界面的刷新并不协调,因此有时会出现显示上的瑕疵,为此使用另一种方法显示图像数据,即利用QT库中的QImage类来实现。
以上论述了如何进行采集及显示,但在实际的系统中存在多个任务,各个模块之间需要相互配合,如果简单地采用上述方法,由于视频采集的速度较慢,将会造成阻塞,影响系统性能,因此使用线程技术。
在视频设备初始化后开启一个采集线程,此线程不断采集新的视频数据,采集完一帧数据会改写状态变量;显示部分采用定时显示,每隔一段时间判断状态变量是否为“已采集完毕”状态,如果是则进行显示。由于需要耗时等待的采集过程在线程中运行,通过Linux系统的自动调度,系统运行十分流畅。
5 观测的结果
观测结果包括:拍摄到的图像、拍摄时所在地的经纬度、拍摄时间、大气温度及拍摄的星体名称等。存储时以文件的形式按时间存储,形成观测日志。
对天体视位置计算算法及望远镜实际指向进行了测试。天体视位置算法的测试是选择有代表性的四个天体(太阳、大鸟六、月球、金星),通过与专业天文软件 STARCALC的计算结果进行比对,衡量计算误差的大小。望远镜实际指向的测试采用现场测量的方法。使用的主要测试工具为计算机、量角器等,测试数据如表1所示。
从比较结果可以看出,由本系统的天体视位置计算算法得出的方位角平均误差为0.261°,高度角平均误差为0.155°,小于系统使用望远镜(物镜焦距360 mm,目镜焦距20 mm)视角6.35°,满足系统观测要求。
图4给出北京时间2008年6月27日20:22:49,在福州大学城(东经119.29°,北纬26.08°)对月球的观测图像;图5给出北京时间2008年6月22日3:47:49,在福州大学城(东经119.29°,北纬26.08°)对金星的观测图像。
6 结 语
针对目前天文观测系统的局限和不足,在基于Intel PXA270和Linux环境下设计了一套新的移动天文观测系统。采用一种特殊的求天体视位置的算法,实现了天体的高精度定位。用户可通过简单的点击操作使天文望远镜自动转向欲观测的星球,应用数字化视频采集技术将观测的对象显示在屏幕上,并对图像进行实时处理,增强了观测效果。最后给出了实测数据,通过数据可以判断该系统与其他系统相比具有精度高,误差小,观测效果好等优点。
全部0条评论
快来发表一下你的评论吧 !