便携设备
最近的Google I/O大会很是热闹。
在大会的最后一日,Alphabet董事长John Hennessy亲口承认:Google Duplex已经在预约领域通过了图灵测试。
通过图灵测试!
多么令人兴奋的六个字。被人工智能所改变的世界蓝图仿佛就在我们眼前铺展。
人工智能成果喷薄爆发以来,热门领域除了机器学习,还有作为计算机语言学、人工智能和数理逻辑的交叉学科——机器翻译。
机器翻译起源于何时?如今发展到了什么程度?
国内在机器翻译上有哪些研究成果,又有哪些公司推出了令人惊叹的落地应用?
在其发展道路上,有哪些大牛发表了哪些成果,推动了地球人无障碍沟通的梦想计划?
未来,机器翻译将可能在哪些领域进行深耕?其发展趋势如何?
这些问题的答案,你都可以在未来一周内找到。
首先,我们需要了解一下机器翻译是如何兴起的。
蹒跚起步
Warren Weaver说:我觉得机器翻译可行
于是全世界都开始搞机器翻译
1946年,第一台数字电子计算机诞生。从那以后,人们就开始思索如何运用计算机代替人从事翻译工作的问题,甚至在此之前,图灵就已经开始思考计算机是否能够进行思维这一问题。
三年之后——1949年,我国正式建立,机器翻译思想也正式提出:Warren Weaver发表《翻译》备忘录,这也被视为机器翻译初始阶段的第一件标志性事件。
Warren Weaver在备忘录里展现了机器翻译的可计算性,并提出了两个主要观点。
第一个观点:他认为翻译类似于解读密码的过程,“翻译即解码”。
第二个观点:他认为原文与译文“说的是同样的事情”。
因此,当把语言A翻译为语言B时,就意味着从语言A出发,会经过某一“通用语言”或“中间语言”(可以假定这个语言是全人类共同的),最终到达语言B。
1954年,美国乔治敦大学(Georgetown)在IBM的协同下,进行了英俄翻译实验,开始了在翻译自动化方面的尝试。这是机器翻译发展初始阶段的第二件标志性事件。
总体来说,这一阶段人们头脑中已经形成了机器翻译的概念,并且已经可以意识到利用语法规则的转换和字典来实现翻译目的。
人们乐观地认为,只要通过扩大词汇量和语法规则,在不久的将来,机器翻译问题会比较完美地得以解决。
所以在此之后的很长一段时间,全球各国大力支持机器翻译项目,一个机器翻译研究的高潮就此形成。
发展冷却
ALPAC说:我觉得机器翻译不行
于是大家又不搞机器翻译了
蓬勃发展17年之后,机器学习迎来了第一个发展低谷。
1966年11月,美国语言自动处理咨询委员会(ALPAC)公布著名的ALPAC报告,从速度、质量、花费、需求等各个角度,几乎是全方位地给给机器翻译研究工作浇了一盆凉水。
APLAC对当时的各个翻译系统进行了一次评估,并在报告提出,机器翻译的译文质量明显要远低于人工翻译。
难以克服的“语义障碍”是当时机器翻译遇到的问题,在报告中,ALPAC全面否定了机器翻译的可行性,并建议各大机构停止对机器翻译的投资和研究。
尽管这份报告的结论过于仓促、武断,但是这一阶段关于机器翻译的研究的确没有解决许多至关重要的问题,并没有对语言进行深入的分析。
此后在世界范围内,机器翻译出现了空前的萧条局面。
全部0条评论
快来发表一下你的评论吧 !