嵌入式技术
内存管理 STM32
一、内存管理简介
内存管理,是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。内存管理的实现方法有很多种,他们其实最终都是要实现 2 个函数:malloc 和 free;malloc 函数用于内存申请,free 函数用于内存释放。本章,我们介绍一种比较简单的办法来实现:分块式内存管下面我们介绍一下该方法的实现原理,如图 42.1.1 所示:
内存管理表的项值代表的意义为:当该项值为 0 的时候,代表对应的内存块未被占用,当该项值非零的时候,代表该项对应的内存块已经被占用,其数值则代表被连续占用的内存块数。比如某项值为 10,那么说明包括本项对应的内存块在内,总共分配了 10 个内存块给外部的某
个指针。内寸分配方向如图所示,是从顶到底的分配方向。即首先从最末端开始找空内存。当内存管理刚初始化的时候,内存表全部清零,表示没有任何内存块被占用。
二、分配原理
当指针 p 调用 malloc 申请内存的时候,先判断 p 要分配的内存块数(m),然后从第 n 项开始,向下查找,直到找到 m 块连续的空内存块(即对应内存管理表项为 0),然后将这 m 个内存管理表项的值都设置为 m(标记被占用),最后,把最后的这个空内存块的地址返回指针 p,完成一次分配。注意,如果当内存不够的时候(找到最后也没找到连续的 m 块空闲内存),则返回 NULL 给 p,表示分配失败。
三、释放原理
当 p 申请的内存用完,需要释放的时候,调用 free 函数实现。free 函数先判断 p 指向的内存地址所对应的内存块,然后找到对应的内存管理表项目,得到 p 所占用的内存块数目 m(内存管理表项目的值就是所分配内存块的数目),将这 m 个内存管理表项目的值都清零,标记释放,完成一次内存释放。
四、部分驱动函数
//内存池(32字节对齐)
__align(32) u8 mem1base[MEM1_MAX_SIZE]; //内部SRAM内存池
__align(32) u8 mem2base[MEM2_MAX_SIZE] __attribute__((at(0X68000000)));//外部SRAM内存池
//内存管理表
u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; //内部SRAM内存池MAP
u16 mem2mapbase[MEM2_ALLOC_TABLE_SIZE] __attribute__((at(0X68000000+MEM2_MAX_SIZE)));//外部SRAM内存池MAP
//内存管理参数
const u32 memtblsize[SRAMBANK]={MEM1_ALLOC_TABLE_SIZE,MEM2_ALLOC_TABLE_SIZE};//内存表大小
const u32 memblksize[SRAMBANK]={MEM1_BLOCK_SIZE,MEM2_BLOCK_SIZE};//内存分块大小
const u32 memsize[SRAMBANK]={MEM1_MAX_SIZE,MEM2_MAX_SIZE};//内存总大小
//内存管理控制器
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused,//内存使用率
mem1base,mem2base,//内存池
mem1mapbase,mem2mapbase,//内存管理状态表
0,0, //内存管理未就绪
};
//复制内存
//*des:目的地址
//*src:源地址
//n:需要复制的内存长度(字节为单位)
void mymemcpy(void *des,void *src,u32 n)
{
u8 *xdes=des;
u8 *xsrc=src;
while(n--)*xdes++=*xsrc++;
}
//设置内存
//*s:内存首地址
//c :要设置的值
//count:需要设置的内存大小(字节为单位)
void mymemset(void *s,u8 c,u32 count)
{
u8 *xs = s;
while(count--)*xs++=c;
}
//内存管理初始化
//memx:所属内存块
void my_mem_init(u8 memx)
{
mymemset(mallco_dev.memmap[memx], 0,memtblsize[memx]*2);//内存状态表数据清零
mymemset(mallco_dev.membase[memx], 0,memsize[memx]);//内存池所有数据清零
mallco_dev.memrdy[memx]=1;//内存管理初始化OK
}
//获取内存使用率
//memx:所属内存块
//返回值:使用率(0~100)
u8 my_mem_perused(u8 memx)
{
u32 used=0;
u32 i;
for(i=0;i {
if(mallco_dev.memmap[memx][i])used++;
}
return (used*100)/(memtblsize[memx]);
}
//内存分配(内部调用)
//memx:所属内存块
//size:要分配的内存大小(字节)
//返回值:0XFFFFFFFF,代表错误;其他,内存偏移地址
u32 my_mem_malloc(u8 memx,u32 size)
{
signed long offset=0;
u32 nmemb; //需要的内存块数
u32 cmemb=0;//连续空内存块数
u32 i;
if(!mallco_dev.memrdy[memx])mallco_dev.init(memx);//未初始化,先执行初始化
if(size==0)return 0XFFFFFFFF;//不需要分配
nmemb=size/memblksize[memx]; //获取需要分配的连续内存块数
if(size%memblksize[memx])nmemb++;
for(offset=memtblsize[memx]-1;offset>=0;offset--)//搜索整个内存控制区
{
if(!mallco_dev.memmap[memx][offset])cmemb++;//连续空内存块数增加
else cmemb=0; //连续内存块清零
if(cmemb==nmemb)//找到了连续nmemb个空内存块
{
for(i=0;i {
mallco_dev.memmap[memx][offset+i]=nmemb;
}
return (offset*memblksize[memx]);//返回偏移地址
}
}
return 0XFFFFFFFF;//未找到符合分配条件的内存块
}
//释放内存(内部调用)
//memx:所属内存块
//offset:内存地址偏移
//返回值:0,释放成功;1,释放失败;
u8 my_mem_free(u8 memx,u32 offset)
{
int i;
if(!mallco_dev.memrdy[memx])//未初始化,先执行初始化
{
mallco_dev.init(memx);
return 1;//未初始化
}
if(offset {
int index=offset/memblksize[memx]; //偏移所在内存块号码
int nmemb=mallco_dev.memmap[memx][index]; //内存块数量
for(i=0;i {
mallco_dev.memmap[memx][index+i]=0;
}
return 0;
}else return 2;//偏移超区了.
}
//释放内存(外部调用)
//memx:所属内存块
//ptr:内存首地址
void myfree(u8 memx,void *ptr)
{
u32 offset;
if(ptr==NULL)return;//地址为0.
offset=(u32)ptr-(u32)mallco_dev.membase[memx];
my_mem_free(memx,offset); //释放内存
}
//分配内存(外部调用)
//memx:所属内存块
//size:内存大小(字节)
//返回值:分配到的内存首地址.
void *mymalloc(u8 memx,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else return (void*)((u32)mallco_dev.membase[memx]+offset);
}
全部0条评论
快来发表一下你的评论吧 !