浅析如何延长电动车铅酸蓄电池寿命

电子说

1.2w人已加入

描述

  电动车电池
 
  电动车电池是电动车上的动力来源,现在的电动车上绝大多数装的是铅酸蓄电池,铅酸蓄电池成本低,性价比高。因为这种电池能充电,可以反复使用,所以称它为“铅酸蓄电池”。
 
  1860年,法国的普朗泰发明出用铅做电极的电池,这是铅酸蓄电池的前身。
 
  结构
 
  锂电池导电涂层
 
  导电涂层也称为预涂层,在锂电池行业内通常指涂覆于正极集流体——铝箔表面的一层导电涂层,涂覆导电涂层的铝箔称为预涂层铝箔或简称涂层铝箔,其最早在电池中的实验可以追溯到70年代,而近几年随着新能源行业,特别是磷酸铁锂电池的发展而风生水起,成为业内炙手可热的新技术或新材料。
 
  锂电池导电涂层性能
 
  导电涂层在锂电池中能够有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显著提升。国外的大公司产品就不介绍了,介绍一下国内唯一一家在市场上推广,并拥有自主知识产权的产品——WX112,由中兴新旗下的上海中兴派能能源科技有限公司研发和生产,从拿到的样品看,满涂、留边、留间隙等技术要求都可以实现。性能如下:
 
  1. 接触电阻下降40%
 
  2. 胶黏剂用量降低50%
 
  3. 同倍率下,电池电压平台提升20%
 
  4. 材料与集流体附着力提高30%,经过长期循环不会有脱层现象
 
  涂碳铝箔使用说明
 
  一、材质说明
 
  涂碳铝箔是由导电碳为主的复合型浆料与高纯度的电子铝箔,以转移式涂覆工艺制成。
 
  二、应用范围
 
  Ø细颗粒活性物质的功率型锂电池
 
  Ø正极为磷酸亚铁锂
 
  Ø正极为细颗粒的三元/锰酸锂
 
  Ø用于超级电容器、锂一次电池(锂亚、锂锰、锂铁、扣式等)替代蚀刻铝箔
 
  三、对电池/电容的性能作用
 
  Ø抑制电池极化,减少热效应,提高倍率性能;
 
  Ø降低电池内阻,并明显降低了循环过程的动态内阻增幅;
 
  Ø提高一致性,增加电池的循环寿命;
 
  Ø提高活性物质与集流体的粘附力,降低极片制造成本;
 
  Ø保护集流体不被电解液腐蚀;
 
  Ø提高磷酸铁锂电池的高、低温性能,改善磷酸铁锂、钛酸锂材料的加工性能。
 
  四、建议参数
 
  对应涂覆的活性物质D50最好不大于4~5μm,压实密度不大于2.25g/cm,比表面积在13~18㎡/g范围内。
 
  五、使用中的注意事项
 
  1.存储要求:在温度为25±5℃、湿度为不超过50%的环境中,运输时须避免空气和水蒸气对铝箔的侵蚀;
 
  2.本产品分为A、B两款,各自的关键特性为:A款外观为黑色,常规涂层厚度为双面4~8μm,导电性能较更为突出;B款外观为淡灰色,常规涂层厚度为双面2~3μm,涂层区可做较少层的焊接,并可以涂布机识别跳间隙;
 
  3.B款(灰色)涂碳铝箔可以在涂层区直接做超声焊,只适合卷绕式电池焊接极耳(极片最多2-3层),但超声的功率、时间需做一些微调;
 
  4.碳层的散热性要比铝箔差些,故做涂布时需对带速与烘烤温度适当微调;
 
  5.本产品对锂电池与电容的综合性能有较可观的提升,但不可作为改变电池某方面性能的主要因素,如电池能量密度、高低温性能、高电压等等。
 
  组装设备
 
  蓄电池铸
 
  铸焊机,又称全自动蓄电池铸焊机。是一种小型阀控密封式铅酸蓄电池铸焊设备,整套设备包括夹具、模具、熔炉、冷却装置、及脱模入池壳装置。所述夹具于底板上设有固定板和可滑动压板两部分组成,固定板上设有定位销;铸焊模具表面设有汇流排和极柱形状的漕沟,并设有定位孔;脱模入池壳装置包括气动脱模装置和气动入池壳装置。本实用新型铸焊设备解决了蓄电池生产中手工焊接的生产效率低、焊接质量差的弊端,并大幅减少人与铅之间的接触。此设备操作简捷实用,适合各种规模的中小型阀控密封式铅酸蓄电池厂组装生产使用。
 
  技术参数
 
  GD-1109-80
 
  GD-1109-80
 
  1、机器型号:GD-1109-80、-120
 
  2、适用电压:AC±5%/50HZ
 
  3、最大功率:16KW
 
  4、适用动力:空气压缩机
 
  5、气源压力:0.8Mpa6、适用范围:各种小密铅酸蓄电池
 
  7、外形尺寸:1200×1400×2200mm

  注意电动车的电池电不能用光了再充,他的原理跟手机电池原理不一样,如果电用尽再充的话,会大大损伤电池,从而影响电动车电池的正常使用,综合使用寿命,电动车电池使用把握一点,勤充电,如果长期不使用的话,也要定期进行充电,切不过长期放置不充电,如果放上几个月不充电的话,可能你的电池直接就OVER了,技术文章:

  如何延长电动车铅酸蓄电池寿命?

  一、令人头痛的电动车电池问题

  对于电动车来说,发展势头异常迅猛。近几年每年的实际产量都超过社会保有量,这是一个惊人的数据,但是,每个优势行业都有“软肋”,如果要问什么是电动车最头痛的问题,唯一的答案就是电池寿命短。

  现在大部分厂家都承诺电池质保一年,可是半年后问题出来了,根据电池的设计及循环放电试验都表明,电池的循环寿命的确是一年半甚至三年,生产时也严格按照工艺流程控制质量,可半年后很多电池就会老化。我们都知道,诸如电视、计算机等很多电子产品的寿命可长达十年,但厂家也只提供一年的质保,而电动车电池最多就2-3年的寿命,电池制造商们却要硬撑着质保一年,这个“硬着头皮”质保的方法短期内还能抵挡片刻,时间长了,问题总会凸现出来。那么如何提高电池的寿命,如何改进电池的的使用环境等等问题都是大家非常失望但又关心的问题。为了弄清楚延长电池寿命的途径,首先就要弄清楚电池的失效机理,以便对症下药。

  二、电动车铅蓄电池寿命短的原因

  从1859年,法国人加斯东普兰特发现了铅酸充放电的现象后,铅酸蓄电池一直是电池领域应用最广泛的产品,如汽车、机车、轮船、飞机、后备供电设备上都有铅酸蓄电池,但我们并有听到很多来自这些领域对铅酸蓄电池的不满,然而,为什么同样的产品到了电动自行车上却是名符其实的“怨声载道”。下面我们从几个方面阐述产生这一问题的原因。

  铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化。

  2、电动自行车特殊工作环境的原因

  只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。

  ①深度放电

  用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。

  ②大电流放电

  电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,但是实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。所以,电动三轮摩托车的电池寿命更短,因为三轮摩托车的车身太重,工作电流达6A以上。

  ③充放电频率高

  用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。

  ④短时充电

  由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重。

  ⑤放电后不能及时充电

  作为交通工具,电动自行车的充电及放电被完全分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结成晶体。

  3、铅蓄电池生产方面的原因

  针对电动自行车用铅酸蓄电池的特殊性,各个电池制造商采取了多种方法。最典型的方法如下:

  ①增加极板数量。

  把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。

  ②提高电池的硫酸比重。

  原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右,这样可以提供较大的电流,提升电池的初期容量。

  ③增加正极板活性物质氧化铅的用量和比例。

  增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。

  通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,最终结果却是牺牲电池的寿命。

  还有就是极群组装虚焊问题。容易产生虚焊的地方是极板。而每个电池的单格有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分之一,平均每37组电池就会有一组电池存在虚焊,这是绝对不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。

  4、电动自行车生产方面的原因

  大多数车的控制器都留了一个线损插头,很多经销商以去掉限速来招揽顾客。一些车厂干脆就去掉限速器出厂,既可以吸引看重车速的客户,也能降低成本,这样的车在高速行驶时电流非常大,会严重缩短电池寿命。

  12V铅酸电池的最低保护电压为10.5V,如果是36V电池组,最低保留电压就是31.5V,目前大多数车厂采用的控制器欠压保护电压也都是31.5V。 表面上看这是正确的,但是,实际当36V电池组只剩下31.5V电压时,由于电池存在容量差,肯定就会有一个电池电压低于10.5V,该电池就处于过放电状态。这时候,过放电的电池容量急剧下降,这时对电池的损伤影响不仅仅是该单只电池,而是影响整组电池的寿命。其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤却非常大。只要出现这样的情况10次,电池的容量就会低于标称容量的70%。另外,一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大,而大多数车的说明书没有给用户以警示。目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的。在价格竞争中,面对更注重车外表的用户群,很少有产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪。

  5、充电设备的原因

  业界广为流传的一句话就是:电池不是用坏的,是充坏的。为了满足电动自行车电池的短时高容量充电,在三段式恒压限流充电中,不得不通过提高恒压值到2.47V~2.49V。这样,大大超过电池正极板析氧电压和负极板析氢电压。一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补。这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧。而电池的氧循环又不好,这样在浮充阶段也在不断的排气。恒压值高了,保证了充电时间,但是牺牲的是失水和硫化。恒压值低了,充电时间和充入电量又难以保证。在改善电池的电池板栅合金、提高析气电位、改善氧循环性能,提高密封反应效率的基础上,控制充电最高充电电压在2.42V以下,也就是在析氢电位以下。这样做必然会导致充电时间的延长,这就必须在大电流充电(限流充电)的状态下,加入去极化的负脉冲,改善电池的充电接受能力,在大电流充电的时候多充入一些电量,缩短充电时间。70%的2C电流充电,是电池在充电接受能力比较大的时候,对电池采用大电流充电,对电池的损伤比较小。电池基本上没有高于严重析氢电压。一旦高于析氢电压,电池也会快速的失水。使用这类充电器,必须采用连续充放电,如果中途停止几天充电,电池就会产生比较严重的硫化而提前失效。 而用户使用电池,是无法保证每次使用以后,都能够及时充电的,一年以内发生数次没有及时充电的情况,电池的硫化就会积累。多数充电器制造商都说车厂因为价格因素不接受可以保证电池寿命的充电器。应该承认,这是大多数小企业是如此,但是,有发展的、规模性大企业确实出高价也买不到好的充电器。一些充电器制造商把某些功能夸大,成品的功效没有其宣传的那样好。还有不少功能是属于卖概念的功能,实效有限。

  6、其它原因

  不少电池在单体测试中,可以获得比较好的结果,但是,对于串连电池组来说,由于容量、开路电压、荷电状态、硫化程度各不相同,这个差异会在串连电池组被扩大,状态差的单体会影响整组电池,其寿命明显下降。

  从电池在生产线上充电,到用户购车后配车使用这段时间要经过很多环节,间隔时间甚至会长达数月,在这期间,由于没对电池进行补充电,自放电产生的硫酸铅大量堆积结晶,用户刚买到的新电池可能是已经老化甚至报费的电池。

  电池厂家在执行质保时,对回收电池并不是完全的淘汰。电池返退以后,电池制造商重新进行充放电检验,在检验中往往会发现有60%以上的单体电池是不符合返退条件的电池。其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降而引起整组返退。不少电池制造商对返退电池采取配组、补水、除硫、包装后,又重新提供给用户,以提高电池的有效使用寿命,降低报废率,减少电池制造商的部分理索赔的损失,所以,很多经销商已经感觉到厂家提供的电池明显“一代不如一代”。

  三、如何解决电池的硫化

  要减小电池的硫化,延长电池的使用寿命,首先就要改善电动自行车的工作环境。减小车身自重,去掉不必要的装饰件,适当限速,不搭载重物,长时间不使用电动自行车时要做补充充电,最好每次放电后都能及时充电,做好欠压保护,严防电池过放电,对于标称24V的欠压保护应该设在21.5V~22V,对于标称36V的欠压保护应该选32.5V±0.5V,对于标称48V的应该设在44V~45V。这样的电压对续行能力仅仅减少不到2公里,但是可以有效延长电池的使用寿命。每三个月定期到专业维修点检修电池,及时补水。这些方法简单易行,经济成本很低,但要严格遵守却有一定难度。所以,可以使用专门的设备进行除硫维护,这些方法有:

  1.使用台式快速除硫设备

  台式快速除硫设备的工作原理是高电压大电流脉冲充电,通过负阻击穿消除硫化。这种方法速度快,见效快,可以获得暂时的消除硫化的效果,但是,高电压大电流能击除硫也能除活性物质,在消除硫化中带来严重失水和正极板软化的问题,对电池产生致命的损伤,经过这类设备除硫两次后的电池基本都会报废。另外,目前的专业维修点进行一次除硫收费基本在60~80元之间,最多能延长电池寿命半年,并没有为用户来显著的经济利益。目前,市场上的专业电池维护店主都已经明白了这种方法的危害。于是,又出现了脉冲放电除硫的设备,其实,根本原理并没有变,只是从恒高压恒大电流变成了瞬时峰值高压,还是会损伤极板活性物质,用过这类产品的朋友应该很清楚这点。

  2.选择可除硫充电器

  目前可除硫充电器有三种工作原理,一种是类同于台式快速除硫设备的工作原理,采用高电压大电流脉冲充电,通过负阻击穿除硫,上面已经说明了这种方法对电池寿命会构成致命伤害,已被市场否定。第二种是采用快速的脉冲前沿的充放电脉冲,利用瞬间峰值,在充电过程中干扰电池的硫化。另一种是周期性的采用10%~20%的过充电的方法,还原电池的硫酸铅结晶。这两种充电器都可以在充电时除硫,但会造成欠充或过充,也忽略了电池放电过程才是最主要的硫化过程这一事实,所以,效果并不理想,大部分用户在具备电动车配备的充电器后会放弃这种重复投资的除硫方式。

  3.使用在线式铅酸蓄电池延生器

  在线式铅酸蓄电池延生器与电池并联,可二十四小时阻止及消除硫化。这种方法修复比较慢,修复时间比较长,往往在120小时以上,但无论是充电还放电过程都能阻止和消除硫化,修复效果很好。因为采用低电压低电流,延生器不会对电池极板产生强大冲击而导致失水和软化,这是一种用户一次投入就可以持之以恒的维护方式,特别是对于质量较好的新电池,可延长电池寿命2~5倍,而且一次投入,可伴随电动自动车,下一次更换电池,延生器还可以继续使用,能为用户节约大量的经济成本。如果用户一年更换一次电池,一组电池280元,用户10年就要花费2800元在电池的更换上,就保守的计算,如果使用延生器延长电池寿命两倍,10年也可节约近一半的电池费用。

  采取这个方法的意义很大。首先是给用户带来了实实在在的经济效益,减少了用户的麻烦。其次是提高了车厂的声誉,为拓展生产提供了条件。第三,为电动车经销商解决了电池质保的难甚,减少投诉,提高信誉度,增加了利润点,同时,在店面销售上也增加了促成交易的销售方案。第四,可以大大减少电池制造商的理索赔费用。第五,改善电动自行车的形象,拓展电动自行车整体市场的发展。第六,提高电池的利用率,有利于环保。


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分