通信网络
信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源利余度而进行的信源符号变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。
信源编码的目的是为了减少或是消除数据的冗余。在保证通信质量的前提下,尽最大的效果,通过对信源的压缩,从而提高通信时的有效性。
为减小信源冗余度而对信源符号进行变换的方法。根据信源性质分类,有信源统计特性已知或未知、无失真或限失真、无记忆或有记忆信源的编码;按编码方法分类,有分组码或非分组码、等长码或变长码等。最常见的是信源统计特性已知的离散、平稳、无失真信源编码。主要方法有:①统计编码,如仙农码、费诺码、赫夫曼码、算术码等。②预测编码。③变换编码,以及上述方法的组合(混合编码)。对于信源统计特性未知的信源编码称为通用编码。衡量信源编码的主要指标是压缩比。在无失真编码中,压缩的极限是编码的平均码表等于信源的符号熵。在限失真编码中,冗余度的压缩极限与平均失真的关系服从信源的信息率失真R(D)函数。在工程应用中则是在压缩比,平均失真和工程实现之间寻求折中。
数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。
提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。
基于层次树的集分割(SPIHT)信源编码方法是基于EZW而改进的算法,它是有效利用了图像小波分解后的多分辨率特性,根据重要性生成比特流的一个渐进式编码。这种编码方法,编码器能够在任意位置终止编码,因此能够精确实现一定目标速率或目标失真度。同样,对于给定的比特流,解码器可以在任意位置停止解码,而仍然能够恢复由截断的比特流编码的图像。而实现这一优越性能并不需要事先的训练和预存表或码本,也不需要任何关于图像源的先验知识。
数字电视中常用的纠错编码,通常采用两次附加纠错码的前向纠错(FEC)编码。RS编码属于第一个FEC,188字节后附加16字节RS码,构成(204,188)RS码,这也可以称为外编码。第二个附加纠错码的FEC一般采用卷积编码,又称为内编码。外编码和内编码结合一起,称之为级联编码。级联编码后得到的数据流再按规定的调制方式对载频进行调制。
前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好。所以在广播系统(单向传输系统)都采用这种信道编码方式。以下是纠错码的各种类型:
既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。当然,这些都是广义的信源编码。
一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀化。
第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。
信道编码的种类主要包括:线性分组码、卷积码、级联码、Turbo码和LDPC码。其中分组码又分为:汉明码,格雷码,循环码(BCH码,RS码,CRC循环冗余校验码。值得说明的是:二进制码中两个码字间的汉明距离(或者简单距离),就是码字中的不同数字的数量。比如:d(0,l)=l,d(001,011)= 1,d(000,111) =3,d(111,111) = 0。
全部0条评论
快来发表一下你的评论吧 !