NLP-Progress库NLP的最新数据集、论文和代码

电子说

1.3w人已加入

描述

方向是自然语言处理的同学们有福啦,为了跟踪自然语言处理(NLP)的进展,有大量仁人志士在 Github 上维护了一个名为 NLP-Progress 的库。它记录了几乎所有NLP任务的 baseline 和 标准数据集,同时还记录了这些问题的state-of-the-art。

Github

https://github.com/sebastianruder/NLP-progress

官方网址

https://nlpprogress.com/

整理报道

huaiwen

NLP-Progress 同时涵盖了传统的NLP任务,如依赖解析和词性标注,和一些新的任务,如阅读理解和自然语言推理。它的不仅为读者提供这些任务的 baseline 和 标准数据集,还记录了这些问题的state-of-the-art。

下面小编简单列举了几个NLP-Progress 记录的任务:

Coreference resolution    共指消解

Dependency parsing    依存分析

Dialogue   对话

Domain Adaption   领域迁移

Entity Linking   实体链接

Information extraction   信息抽取

Language modeling    语言模型

Machine translation    机器翻译

Multi-task learning    多任务学习

Multi-modal    多模态

Named entity recognition    命名实体是被

Natural language inference    自然语言推理

Part-of-speech tagging    词性标注

Question answering    问答

Relation prediction    关系预测

Relationship extraction    关系抽取

Semantic textual similarity    语义文本相似性

Semantic parsing    语义分析

Semantic role labeling    语义角色标注

Sentiment analysis    情感分析

Summarization    文本照耀

Taxonomy learning    分类结构学习

Temporal processing    时序分析

Text classification    文本分类

Word sense disambiguation    词义消岐

。。。

。。。

对于每一个任务,NLP-Progress都会简单介绍一下这个任务是做什么的,并详细列出公开的标准数据集,以及在该数据集上各个模型目前的排名情况。比如,比较火的Question answering 问答系统任务,它的组织形式如下:

具体到某一个开放数据集,如 Quasar, 贡献者会简单介绍该数据集的组成,然后列出论文排行榜,其中每一行都包括:模型,效果,文章名和链接,以及代码链接。

代码

还等什么,赶紧去 Star一下。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分