三个方面对光耦做讨论,光耦参数的理解

描述

光耦参数的理解

引言

光耦作为一个隔离器件已经得到广泛应用,无处不在。一般大家在初次接触到光耦时往往感到无从下手,不知设计对与错,随着遇到越来越多的问题,才会慢慢有所体会。

本文就三个方面对光耦做讨论:光耦工作原理;光耦的 CTR 概念;光耦的延时。本讨论也有认识上的局限性,但希望能帮助到初次使用光耦的同事。

1 理解光耦

光耦是隔离传输器件,原边给定信号,副边回路就会输出经过隔离的信号。对于光耦的隔离容易理解,此处不做讨论。

以一个简单的图(图.1)说明光耦的工作:原边输入信号 Vin,施加到原边的发光二极管和 Ri 上产生光耦的输入电流 If,If 驱动发光二极管,使得副边的光敏三极管导通,回路VCC、RL 产生 Ic,Ic 经过 R L  产生 Vout,达到传递信号的目的。原边副边直接的驱动关联是CTR(电流传输比),要满足 Ic≤If*CTR。

光耦一般会有两个用途:线性光耦和逻辑光耦,如果理解?

工作在开关状态的光耦副边三极管饱和导通,管压降<0.4V,Vout 约等于 Vcc(Vcc-0.4V左右),Vout 大小只受 Vcc 大小影响。此时 Ic

工作在线性状态的光耦,Ic=If*CTR,副边三极管压降的大小等于 Vcc-Ic*R L ,Vout= Ic*R L=(Vin-1.6V)/Ri * CTR*R L ,Vout 大小直接与 Vin 成比例,一般用于反馈环路里面 (1.6V 是粗略估计,实际要按器件资料,后续 1.6V 同) 。

对于光耦开关和线性状态可以类比为普通三极管的饱和放大两个状态。

发光二极管

所以通过分析实际的电路,除去隔离因素,用分析三极管的方法来分析光耦是一个很有效的方法。此方法对于后续分析光耦的 CTR 参数,还有延迟参数都有助于理解。

2 光耦  CTR

概要:1)对于工作在线性状态的光耦要根据实际情况分析;2)对于工作在开关状态的光耦要保证光耦导通时 CTR 有一定余量;3)CTR 受多个因素影响。

2.1 光耦能否可靠导通实际计算

举例分析,例如图.1 中的光耦电路,假设 Ri = 1k,Ro = 1k,光耦 CTR= 50%,光耦导通时假设二极管压降为 1.6V,副边三极管饱和导通压降 Vce=0.4V。输入信号 Vi 是 5V 的方波,输出 Vcc 是 3.3V。Vout 能得到 3.3V 的方波吗?

我们来算算:If = (Vi-1.6V)/Ri = 3.4mA

副边的电流限制:Ic’≤ CTR*If = 1.7mA

假设副边要饱和导通,那么需要 Ic’= (3.3V – 0.4V)/1k = 2.9mA,大于电流通道限制,所以导通时,Ic 会被光耦限制到 1.7mA, Vout = Ro*1.7mA = 1.7V

所以副边得到的是 1.7V 的方波。

为什么得不到 3.3V 的方波,可以理解为图.1 光耦电路的电流驱动能力小,只能驱动1.7mA 的电流,所以光耦会增大副边三极管的导通压降来限制副边的电流到 1.7mA。

解决措施:增大 If;增大 CTR;减小 Ic。对应措施为:减小 Ri 阻值;更换大 CTR 光耦;增大 Ro 阻值。

将上述参数稍加优化,假设增大 Ri 到 200 欧姆,其他一切条件都不变,Vout 能得到 3.3V的方波吗?

重新计算:If = (Vi – 1.6V)/Ri = 17mA;副边电流限制 Ic’≤ CTR*If = 8.5mA,远

大于副边饱和导通需要的电流(2.9mA),所以实际 Ic = 2.9mA。

所以,更改 Ri 后,Vout 输出 3.3V 的方波。

开关状态的光耦,实际计算时,一般将电路能正常工作需要的最大 Ic 与原边能提供的最小 If 之间 Ic/If 的比值与光耦的 CTR 参数做比较,如果 Ic/If ≤CTR,说明光耦能可靠导通。一般会预留一点余量(建议小于 CTR 的 90%)。

工作在线性状态令当别论。

2.2  CTR  受那些因素影响

上一节说到设计时要保证一定 CTR 余量。就是因为 CTR 的大小受众多因素影响,这些因素之中既有导致 CTR 只离散的因素(不同光耦),又有与 CTR 有一致性的参数(壳温/If)。

1)光耦本身:以 8701 为例,CTR 在 Ta=25℃/If=16mA 时,范围是(15%~35%)

说明 8701 这个型号的光耦,不论何时/何地,任何批次里的一个样品,只要在 Ta=25℃/If=16mA 这个条件下,CTR 是一个确定的值,都能确定在 15%~35%以内。 计算导通时,要以下限进行计算,并且保证有余量。计算关断时要以上限。

2)壳温影响:

Ta=25℃条件下的 CTR 下限确定了,但往往产品里面温度范围比较大,比如光耦会工作在(-5~75℃)下,此种情况下 CTR 怎么确定?还是看 8701 的手册:有 Ta-CTR 关系图:  

发光二极管

从图中看出,以 25 度的为基准,在其他条件不变的情况下,-5 度下的 CTR 是 25 度下的 0.9 倍左右,75 度下最小与 25 度下的 CTR 持平。

所以在 16mA/(-5~75℃)条件下,8701 的 CTR 最小值是 15%*0.9 = 13.5%

3) 受 If 影响。

假设如果实际的 If 是 3.4mA,那么如何确定 CTR 在 If=3.4mA / Ta=(-5~75℃)条件下的最小 CTR 值。

查看 8701 的 If-CTR 曲线。图中给出了三条曲线,代表抽取了三个样品做测试得到的If-CTR 曲线,实际只需要一个样品的曲线即可。

发光二极管

注:此图容易理解为下限/典型/上限三个曲线,其实不然。大部分图表曲线只是一个相对关系图,不能图中读出绝对的参数值。

计算:选用最上面一条样品曲线,由图中查出,If=16mA 时 CTR 大概 28%,在 If=3.4mA时 CTR 大概在 46%。3.4mA 是 16mA 时的 46%/28% = 1.64 倍;

所以,在 If=3.4mA / (-5~75℃),CTR 下限为 13.5% * 1.64 = 22.2%

以上所有分析都是基于 8701 的,其他光耦的特性曲线需要查用户手册,分析方法一样。

3 光耦延时

上述 CTR 影响到信号能不能传过去的问题,类似于直流特性。下面主要分析光耦的延时特性,即光耦能传送多快信号。

涉 及到 两个参 数: 光耦导通延时 t plh  和 光耦关断 延时 t phl  ,以 8701 为例 :在If=16mA/Ic=2mA 时候,关断延时最大 0.8uS,导通延时最大 1.2uS。所以用 8701 传递 500k以上的开关信号就需要不能满足。

发光二极管

下图是一个实测的延时波形(ch4 原边(红),ch2 副边(绿))

对于 t p  参数的设计更应该考虑余量,因为 t p  参数也受其他因素影响较多。

1) 受温度影响

8701 的 Ta-If 特征曲线:温度升高,开关延时都会增大。

发光二极管

2) 受原边 If 大小影响

8701 的 tp-If 特征曲线:If 增大,关断延时减小,开通延时增大

发光二极管

3) 受副边 Ic 大小影响

8701 的 tp-R L  特征曲线:R L  减小,导通延时增大明显

发光二极管

针对具体电路的特点,计算最大延时时也是采用与 CTR 一样的方法,通过器件资料给定特定环境下的准确范围,然后逐一通过三个曲线确定具体电路下的光耦最大延时。

注:同一个型号的光耦 CTR/延时特性是一致的,不同光耦的延时特性不尽相同,所以需要根据所用光耦的用户手册来确定。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分