电子说
伴随越来越多的高科技汽车电子产品的开发与应用,如何解决汽车电子系统的电磁兼容问题,提高汽车的可靠性和安全性,已经成为一个非常重要和迫切的问题。然而接地设计作为根治电磁兼容问题方法之一,地偏移测试显得就尤为重要了,因此本文对接地设计及地偏移测试进行了解读。
1、 地线的意义
地线在汽车上不仅仅是一个接点,它是一个综合的系统的汽车电气系统,它的主要功能有:
2、 地线可靠性
地线回路的可靠性主要由以下几个主要关键因素决定:
接地金属的连接面,包括接地板之间、接地线和接地板之间的连接情况;
涂覆层及润滑油对传导地线连接板及其紧固件的影响;
潜在的腐蚀;
潜在的机械退化。
3、 汽车上接地的符号以及接地回路见下
整车电气地:主要为 DC 回路中发电机和蓄电池,以及 AC 回路中所有产品 RF 地;
整车结构地:标识为汽车结构件(例如发动机、白车身等)接地标识;
产品电路接地:产品电路接地,包括模拟地、数字地都可以使用此符号;
4、 实车使用的接地结构图
图 1 实车的接地结构图
此为实车使用的接地结构图,其中所有的接地最终回到蓄电池和发电机的负极端。随着频率的增大,回路的阻抗也会增大,最终会导致电流流过不希望的回路,出现共模干扰,进而产生EMC效应,损坏产品。
那么大家会问为什么地偏移会产生共模干扰呢?提到共模干扰不得不说差模干扰,下面我们一起了解一下吧。
电器设备的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是“地线”。电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为“差模”;另一种是两根导线做去路,地线做返回传输, 我们称之为“共模”。
图 2
如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为“差模”;而黄信号是在信号与地线之间传输的,我们称之为“共模”。
任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。图3为共模干扰。
图 3
共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。如图4为差模干扰。
图 4
差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。
发生了地偏移为了保证车网络能够正常通信,没有错误帧的出现,需要进行整车的地偏移测试。
3、 CANDT地偏移测试
1、 测试目的
本测试用例用于检查发生地偏移故障状态过程中 DUT 的 CAN 总线通信状态,并检查该故障修复后 DUT 是否能够恢复 CAN 总线通信。
2、 判断依据
在地偏移电压从 0V 变化至 2V(用户可设置该范围) 过程中,不允许DUT 出现CAN 总线通信故障(如:发送错误帧等)。
3、 测试原理及步骤
图 5
本测试用于检验组件的可靠运转情况,比如一个组件的电源由蓄电池和发动机双路提供,电源电压可能不一致,导致地偏移发生,为了检测CAN信号能否正常通信,可以使用ZLG致远电子的CANDT一致性测试系统。
CANDT一致性测试系统可自动化完成CAN节点物理层、链路层及应用层一致性测试,是当前CAN总线测试领域唯一能够进行完善的物理层自动化测试并导出报表的仪器设备,详情架构如下图
图6
根据测试标准,用CANDT对总线上各个节点的地偏移进行一致性测试,测试结果可生成报表,如图7所示。
图7
全部0条评论
快来发表一下你的评论吧 !