TensorFlow 不仅仅可以用于机器学习。在此教程中,我们所举的例子(较为寻常)是使用 TensorFlow 模拟偏微分方程的行为(https://en.wikipedia.org/wiki/Partial_differential_equation)。我们将模拟几个雨滴落在方形池塘水面的情形。
基本设置
需要导入一些库。
#Import libraries for simulationimport tensorflow as tfimport numpy as np#Imports for visualizationimport PIL.Imagefrom io import BytesIOfrom IPython.display import clear_output, Image, display
将池塘水面的状态显示为图像的函数。
def DisplayArray(a, fmt='jpeg', rng=[0,1]): """Display an array as a picture.""" a = (a - rng[0])/float(rng[1] - rng[0])*255 a = np.uint8(np.clip(a, 0, 255)) f = BytesIO() PIL.Image.fromarray(a).save(f, fmt) clear_output(wait = True) display(Image(data=f.getvalue()))
接下来,我们发起一个互动式 TensorFlow 会话,以方便练习。如果我们使用可执行的 .py 文件进行模拟,则常规会话一样可行。
sess = tf.InteractiveSession()
计算便利函数
def make_kernel(a):
"""Transform a 2D array into a convolution kernel""" a = np.asarray(a) a = a.reshape(list(a.shape) + [1,1]) return tf.constant(a, dtype=1)def simple_conv(x, k): """A simplified 2D convolution operation""" x = tf.expand_dims(tf.expand_dims(x, 0), -1) y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME') return y[0, :, :, 0]def laplace(x): """Compute the 2D laplacian of an array""" laplace_k = make_kernel([[0.5, 1.0, 0.5], [1.0, -6., 1.0], [0.5, 1.0, 0.5]]) return simple_conv(x, laplace_k)
定义 PDE
我们的池塘是一个完美的 500 x 500 正方形,就像自然界中的大多数池塘一样。
N = 500
接下来,我们创建池塘,并在其表面落入一些雨滴。
# Initial Conditions -- some rain drops hit a pond
# Set everything to zerou_init = np.zeros([N, N], dtype=np.float32)ut_init = np.zeros([N, N], dtype=np.float32)# Some rain drops hit a pond at random pointsfor n in range(40): a,b = np.random.randint(0, N, 2) u_init[a,b] = np.random.uniform()DisplayArray(u_init, rng=[-0.1, 0.1])
现在,我们指定微分方程的详细信息。
# Parameters:
# eps -- time resolution# damping -- wave dampingeps = tf.placeholder(tf.float32, shape=())damping = tf.placeholder(tf.float32, shape=())# Create variables for simulation stateU = tf.Variable(u_init)Ut = tf.Variable(ut_init)# Discretized PDE update rulesU_ = U + eps * UtUt_ = Ut + eps * (laplace(U) - damping * Ut)# Operation to update the statestep = tf.group( U.assign(U_), Ut.assign(Ut_))
运行模拟
情况变得有趣起来 - 使用简单的 for 循环让其持续运行。
# Initialize state to initial conditions
tf.global_variables_initializer().run()# Run 1000 steps of PDEfor i in range(1000): # Step simulation step.run({eps: 0.03, damping: 0.04}) DisplayArray(U.eval(), rng=[-0.1, 0.1])
全部0条评论
快来发表一下你的评论吧 !