C语言指针的用法和好处

电子说

1.3w人已加入

描述

吴坚鸿开场白:当我们想把某种算法通过一个函数来实现的时候,如果不会指针,那么只有两种方法。第1种:用不带参数返回的空函数。这是最原始的做法,也是我当年刚毕业就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。这种方法的缺点是阅读不直观,封装性不强,没有面对用户的输入输出接口。第2种:用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,如果要用在返回多个输出结果的函数中,就无能为力了,这时候该怎么办?就必须用指针了,也就是我下面讲到的第3种方法。这一节要教大家一个知识点:通过指针,让函数可以返回多个变量。具体内容,请看源代码讲解。(1)实现功能:通过电脑串口调试助手,往单片机发送EB 00 55 XX YY  指令,其中EB 00 55是数据头, XX是被除数,YY是除数。单片机收到指令后就会返回6个数据,最前面两个数据是第1种运算方式的商和余数,中间两个数据是第2种运算方式的商和余数,最后两个数据是第3种运算方式的商和余数。比如电脑发送:EB 00 55 08 02单片机就返回:04 00 04 00 04 00  (04是商,00是余数)串口程序的接收部分请参考第39节。串口程序的发送部分请参考第42节。波特率是:9600 。 

#include "REG52.H"

#define const_voice_short  40   //蜂鸣器短叫的持续时间

#define const_rc_size  10  //接收串口中断数据的缓冲区数组大小

#define const_receive_time  5  //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小

void initial_myself(void);    

void initial_peripheral(void);

void delay_long(unsigned int uiDelaylong);

void delay_short(unsigned int uiDelayShort); 

void T0_time(void);  //定时中断函数

void usart_receive(void); //串口接收中断函数

void usart_service(void);  //串口服务程序,在main函数里

void eusart_send(unsigned char ucSendData);

void chu_fa_yun_suan_1(void);//第1种方法 求商和余数

unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求商

unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求余数

void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp);//第3种方法 求商和余数

sbit beep_dr=P2^7; //蜂鸣器的驱动IO口

unsigned int  uiSendCnt=0;     //用来识别串口是否接收完一串数据的计时器

unsigned char ucSendLock=1;    //串口服务程序的自锁变量,每次接收完一串数据只处理一次

unsigned int  uiRcregTotal=0;  //代表当前缓冲区已经接收了多少个数据

unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组

unsigned int  uiRcMoveIndex=0;  //用来解析数据协议的中间变量

unsigned int  uiVoiceCnt=0;  //蜂鸣器鸣叫的持续时间计数器

unsigned char ucBeiChuShu_1=0;  //第1种方法中的被除数

unsigned char ucChuShu_1=1;     //第1种方法中的除数

unsigned char ucShang_1=0;      //第1种方法中的商

unsigned char ucYu_1=0;         //第1种方法中的余数

unsigned char ucBeiChuShu_2=0;  //第2种方法中的被除数

unsigned char ucChuShu_2=1;     //第2种方法中的除数

unsigned char ucShang_2=0;      //第2种方法中的商

unsigned char ucYu_2=0;         //第2种方法中的余数

unsigned char ucBeiChuShu_3=0;  //第3种方法中的被除数

unsigned char ucChuShu_3=1;     //第3种方法中的除数

unsigned char ucShang_3=0;      //第3种方法中的商

unsigned char ucYu_3=0;         //第3种方法中的余数

void main() 

{

initial_myself();  

delay_long(100);   

initial_peripheral(); 

while(1)  

usart_service();  //串口服务程序

}

}

/* 注释一:

* 第1种方法,用不带参数返回的空函数,这是最原始的做法,也是我当年刚毕业

* 就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。

* 我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,

* 调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。

* 在本函数中,被除数ucBeiChuShu_1和除数ucChuShu_1就是输入全局变量,

* 商ucShang_1和余数ucYu_1就是输出全局变量。这种方法的缺点是阅读不直观,

* 封装性不强,没有面对用户的输入输出接口,

*/

void chu_fa_yun_suan_1(void)//第1种方法 求商和余数

{

if(ucChuShu_1==0) //如果除数为0,则商和余数都为0

{

ucShang_1=0;

ucYu_1=0;

}

else

{

ucShang_1=ucBeiChuShu_1/ucChuShu_1;  //求商

ucYu_1=ucBeiChuShu_1%ucChuShu_1;  //求余数

}

}

/* 注释二:

* 第2种方法,用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,

* 比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,

* 如果要用在返回多个输出结果的函数中,就无能为力了。比如本程序,就不能同时输出

* 商和余数,只能分两个函数来做。如果要在一个函数中同时输出商和余数,该怎么办?

* 这个时候就必须用指针了,也就是我下面讲到的第3种方法。

*/

unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求商

{

unsigned char ucShangTemp;

if(ucChuShuTemp==0) //如果除数为0,则商为0

{

ucShangTemp=0;

}

else

{

ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp;  //求商

}

return ucShangTemp; //返回运算后的结果 商

}

unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求余数

{

unsigned char ucYuTemp;

if(ucChuShuTemp==0) //如果除数为0,则余数为0

{

ucYuTemp=0;

}

else

{

ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp;   //求余数

}

return ucYuTemp; //返回运算后的结果 余数

}

/* 注释三:

* 第3种方法,用带指针的函数,就可以顺心所欲,不受return的局限,想输出多少个

* 运算结果都可以,赞一个!在本函数中,ucBeiChuShuTemp和ucChuShuTemp是输入变量,

* 它们不是指针,所以不具备输出接口属性。*p_ucShangTemp和*p_ucYuTemp是输出变量,

* 因为它们是指针,所以具备输出接口属性。

*/

void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp)//第3种方法 求商和余数

{

if(ucChuShuTemp==0) //如果除数为0,则商和余数都为0

{

*p_ucShangTemp=0;

*p_ucYuTemp=0;

}

else

{

*p_ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp;  //求商

*p_ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp;  //求余数

}

}

void usart_service(void)  //串口服务程序,在main函数里

{

if(uiSendCnt>=const_receive_time&&ucSendLock==1) //说明超过了一定的时间内,再也没有新数据从串口来

{

ucSendLock=0;    //处理一次就锁起来,不用每次都进来,除非有新接收的数据

//下面的代码进入数据协议解析和数据处理的阶段

uiRcMoveIndex=0; //由于是判断数据头,所以下标移动变量从数组的0开始向最尾端移动

while(uiRcregTotal>=5&&uiRcMoveIndex<=(uiRcregTotal-5)) 

{

if(ucRcregBuf[uiRcMoveIndex+0]==0xeb&&ucRcregBuf[uiRcMoveIndex+1]==0x00&&ucRcregBuf[uiRcMoveIndex+2]==0x55)  //数据头eb 00 55的判断

{

//第1种运算方法,依靠全局变量

ucBeiChuShu_1=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_1=ucRcregBuf[uiRcMoveIndex+4];  //除数

chu_fa_yun_suan_1(); //调用一次空函数就出结果了,结果保存在ucShang_1和ucYu_1全局变量中

eusart_send(ucShang_1); //把运算结果返回给上位机观察

eusart_send(ucYu_1);//把运算结果返回给上位机观察

//第2种运算方法,依靠两个带return语句的返回函数

ucBeiChuShu_2=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_2=ucRcregBuf[uiRcMoveIndex+4];  //除数

ucShang_2=get_shang_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求商

ucYu_2=get_yu_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求余数

eusart_send(ucShang_2); //把运算结果返回给上位机观察

eusart_send(ucYu_2);//把运算结果返回给上位机观察

//第3种运算方法,依靠指针

ucBeiChuShu_3=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_3=ucRcregBuf[uiRcMoveIndex+4];  //除数

/* 注释四:

* 注意,由于商和余数是指针形参,我们代入的变量必须带地址符号& 。比如&ucShang_3和&ucYu_3。

* 因为我们是把变量的地址传递进去的。

*/

chu_fa_yun_suan_3(ucBeiChuShu_3,ucChuShu_3,&ucShang_3,&ucYu_3);//第3种方法 求商和余数 

eusart_send(ucShang_3); //把运算结果返回给上位机观察

eusart_send(ucYu_3);//把运算结果返回给上位机观察

break;   //退出循环

}

uiRcMoveIndex++; //因为是判断数据头,游标向着数组最尾端的方向移动

}

uiRcregTotal=0;  //清空缓冲的下标,方便下次重新从0下标开始接受新数据

}

}

void eusart_send(unsigned char ucSendData) //往上位机发送一个字节的函数

{

ES = 0; //关串口中断

TI = 0; //清零串口发送完成中断请求标志

SBUF =ucSendData; //发送一个字节

delay_short(400);  //每个字节之间的延时,这里非常关键,也是最容易出错的地方。延时的大小请根据实际项目来调整

TI = 0; //清零串口发送完成中断请求标志

ES = 1; //允许串口中断

}

void T0_time(void) interrupt 1    //定时中断

{

TF0=0;  //清除中断标志

TR0=0; //关中断

if(uiSendCnt) >

{

uiSendCnt++;    //表面上这个数据不断累加,但是在串口中断里,每接收一个字节它都会被清零,除非这个中间没有串口数据过来

ucSendLock=1;     //开自锁标志

}

if(uiVoiceCnt!=0)

{

uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫

beep_dr=0;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。

}

else

{

; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。

beep_dr=1;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。

}

TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

TR0=1;  //开中断

}

void usart_receive(void) interrupt 4                 //串口接收数据中断        

{        

if(RI==1)  

{

RI = 0;

++uiRcregTotal;

if(uiRcregTotal>const_rc_size)  //超过缓冲区

{

uiRcregTotal=const_rc_size;

}

ucRcregBuf[uiRcregTotal-1]=SBUF;   //将串口接收到的数据缓存到接收缓冲区里

uiSendCnt=0;  //及时喂狗,虽然main函数那边不断在累加,但是只要串口的数据还没发送完毕,那么它永远也长不大,因为每个中断都被清零。

}

else  //发送中断,及时把发送中断标志位清零

{

TI = 0;

}

}                                

void delay_long(unsigned int uiDelayLong)

{

unsigned int i;

unsigned int j;

for(i=0;i;i++)<>

{

for(j=0;j<500;j++)  //内嵌循环的空指令数量

{

; //一个分号相当于执行一条空语句

}

}

}

void delay_short(unsigned int uiDelayShort) 

{

unsigned int i;  

for(i=0;i;i++)<>

{

;   //一个分号相当于执行一条空语句

}

}

void initial_myself(void)  //第一区 初始化单片机

{

beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

//配置定时器

TMOD=0x01;  //设置定时器0为工作方式1

TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

//配置串口

SCON=0x50;

TMOD=0X21;

TH1=TL1=-(11059200L/12/32/9600);  //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。

TR1=1;

}

void initial_peripheral(void) //第二区 初始化外围

{

EA=1;     //开总中断

ES=1;     //允许串口中断

ET0=1;    //允许定时中断

TR0=1;    //启动定时中断

}

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分