基于FPGA的均值滤波算法的实现

FPGA/ASIC技术

206人已加入

描述

我们为了实现动态图像的滤波算法,用串口发送图像数据到FPGA开发板,经FPGA进行图像处理算法后,动态显示到VGA显示屏上,前面我们把硬件平台已经搭建完成了,后面我们将利用这个硬件基础平台上来实现基于FPGA的一系列图像处理基础算法。

椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。椒盐噪声是一种因为信号脉冲强度引起的噪声,产生清楚该噪声的算法也比较简单。

均值滤波的方法将数据存储成3x3的矩阵,然后求这个矩阵。在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。

均值滤波

如图所示,我们要进行均值滤波首先要生成一个3x3矩阵。算法运算窗口一般采用奇数点的邻域来计算中值,最常用的窗口有3X3和5X5模型。下面介绍3X3窗口的Verilog实现方法。

(1) 通过2个或者3个RAM的存储来实现3X3像素窗口;

(2) 通过2个或者3个FIFO的存储来实现3X3像素窗口;

(3) 通过2行或者3行Shift_RAM的存储来实现3X3像素窗口;

要想用实现均值滤波和中值滤波,必须要先生成3x3阵列,在Altera系列里,可以用QuatusII调用IP核——shift_RAM,具体设置参数如图所示。

FPGA

FPGA

如上图所示,其中shiftin是实时输入的数据,taps1x,taps2x输入数据的第二三行,当数据输入成一行三个时,自动跳到下一行,最终形成每行是三列的一个矩阵,用均值滤波和中值滤波的处理方法即可,这样基本是每一个目标都可以找到自己对应的一个3x3矩阵,最后进行处理。先进入IP核里面的是最开始的的数据,所以在读出的时候也是要放在第一行。

Xilinx Vivado也有自己的Shift_RAM IP Core,不过这里只能缓存出来一行数据,我们这里需要两个Shift_RAM IP Core和正在输入的一行数据共同组成3行数据。这里调用两个Shift_RAM IP Core将这两个IP级联起来就行了。

FPGA

FPGA

FPGA

本系统主要用通过调用两个shift_register IP核来生成3X3矩阵实现3X3像素窗口。shift_register IP核可定义数据宽度、移位的行数、每行的深度。这里我们需要8bit。640个数据每行,同事移位寄存2行即可。同时选择时钟使能端口clken。如图所示。

FPGA

像素数据移位寄存

我们这里将行设置为12,所以可以明显的看到,当数据缓存到一行时,就会移位寄存到下一行,缓存两行后便会生成3X3矩阵。

FPGA

缓存的数据

比较缓存的第一行的数据在3x3矩阵中,占第一行,结果相同,显然是正确的。最终生成的3x3矩阵结果显然是正确的。

FPGA

求总值

求均值

我们在计算均值的时候采用两级流水线消耗了2个时钟周期,所以最后要将输给写RAM使能的数据缓存使能延时两个时钟周期!学到一个延时的新写法。

FPGA

将3x3矩阵的中心像素的周围八个点求和,我们这里还是采取流水线的设计方法,来增加吞吐量,然后再求平均值代替目标像素的值,这里读者可以自己思考怎么设计,从波形图上观察,计算的结果显然是正确的。这样便完成了均值滤波的仿真。

我们来看一下板级测试视频:http://t.cn/RCJxiGF

FPGA

FPGA

最后我们来比较一下显示效果,上图为灰度图像,下图为均值滤波后的图像,可以看出滤波后的图像有一些模糊,这是因为均值滤波就是将图像做平滑处理,像素值高的像素会被拉低,像素值低像素会被拉高,趋向于一个平均值,所以图像会变模糊一些。而且细心的人可以把图片放大会看到,图片上会有几个白黑点,这其实就是椒盐噪声,我们文章开头也说过了,椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能力,所以显示的图片上会留下一些黑白点。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
TiAr 2019-03-28
0 回复 举报
文章开头不就是说要处理椒盐噪声吗?!!!文章最后又说对椒盐噪声无能为力????!!!!!!!! 收起回复

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分