Pieter Abbeel发布了一份资源大礼:《深度学习与机器人学》105页PPT

电子说

1.3w人已加入

描述

2019年开启之际,美国加州大学伯克利分校教授、机器人与强化学习领域专家 Pieter Abbeel 发布了一份资源大礼:《深度学习与机器人学》105页PPT。这份PPT整理自Abbeel教授2018年受邀参加的69个演讲,内容涵盖监督学习、强化学习和无监督学习的重要进展,以及深度学习的主要应用等方面,有助于读者对深度学习和机器人学有一个宏观的理解。

Pieter Abbeel教授从AI近年的一些“热论”讲起,从马斯克认为AI是人类文明面临的最大威胁、普京说“谁能成为 AI 领域的领袖,谁就将成为世界的主宰者”,概述了近年来AI的热潮:NIPS等顶会的参会人数达到史上最高、arxiv上AI领域的论文翻倍增长。

报告的主体部分是“深度学习成功”,详细介绍了监督学习、强化学习和无监督学习的重要进展。Pieter Abbeel教授对这三个概念的解释如下:

监督学习:模式识别,如果有足够多的数据(input -> output pairs),那么神经网络就能够学习模式;

强化学习:通过试错的过程,学习目标导向的行为

无监督学习:没有明确的监督的条件下,学习世界的结构

最后,报告展示了深度学习的一系列应用。

机器人

PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0

Pieter Abbeel教授简介

机器人

Pieter Abbeel,加州大学伯克利分校教授、机器人学习实验室主任,伯克利人工智能研究(BAIR)实验室联合主任。

Pieter Abbeel是机器人和强化学习领域的大牛。Pieter Abbeel 2008年从斯坦福大学获得博士学位,师从百度前首席科学家 Andrew Ng(吴恩达),毕业后在UC Berkeley任教。

2016~2017年,Pieter Abbeel加入Open AI,任研究科学家。现在则是Open AI顾问。

Pieter Abbeel还是两家AI公司的创始人,Gradescope和covariant.ai。Gradescope开发为家庭作业、课题研究、试卷等打分的AI系统;covariant.ai开发机器人自动化的AI系统,在制造/仓储/电子商务/物流等领域应用。

Pieter Abbeel 的研究重点特别集中于如何让机器人向人类学习(学徒学习),如何让机器人通过自己的试错过程学习(强化学习),以及如何通过从learning-to-learn(元学习)过程中加快技能获取。他开发的机器人已经学会了先进的直升机特技飞行、打结、基本装配、叠衣服、移动、以及基于视觉的机器人操作。

机器人叠毛巾

Pieter Abbeel目前的主要研究方向:机器人和机器学习,特别关注深度强化学习、深度模仿学习、深度无监督学习、元学习、learning-to-learn、以及AI安全。

PPT全文

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

机器人

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分