通过Python将故宫的建筑物图片,转化为手绘图

电子说

1.3w人已加入

描述

13日早晨,当北京市民拉开窗帘时发现,窗外雪花纷纷扬扬在空中飘落,而且越下越大,树上、草地、屋顶、道路上,都落满雪花。京城银装素裹,这是今冬以来北京迎来的第二场降雪。

一下雪,北京就变成了北平,故宫就变成了紫禁城。八万张门票在雪花飘下来之前,便早已预订一空。

(图片来源:故宫官网 版权归故宫官网所有)

看着朋友圈、微博好友都在纷纷晒图,小编只能羡慕不已。

不过,突然想到,可以通过Python将故宫的建筑物图片,转化为手绘图(素描效果)。效果图如下:

一、概念与原理

我们都知道手绘图效果的特征主要有:

黑白灰色;边界线条较重;相同或相近色彩趋于白色;略有光源效果

核心原理:利用像素之间的梯度值和虚拟深度值对图像进行重构,根据灰度变化来模拟人类视觉的模拟程度

把图像看成二维离散函数,灰度梯度其实就是这个二维离散函数的求导,用差分代替微分,求取图像的灰度梯度。常用的一些灰度梯度模板有:Roberts 梯度、Sobel 梯度、Prewitt 梯度、Laplacian 梯度。

以Sobel 梯度计算来解释:

首先计算出 pythonpython,然后计算梯度角 python梯度方向及图像灰度增大的方向,其中梯度方向的梯度夹角大于平坦区域的梯度夹角。如下图所示,灰度值增加的方向梯度夹角大,此时梯度夹角大的方向为梯度方向。对应在图像中寻找某一点的梯度方向即通过计算该点与其8邻域点的梯度角,梯度角最大即为梯度方向。

python

二、图像的数组形式与变换

其中,需要用到的方法:

Image.open( ): 打开图片

np.array( ) : 将图像转化为数组

convert("L"): 将图片转换成二维灰度图片

Image.fromarray( ): 将数组还原成图像uint8格式

代码如下:

from PIL import Imageimport numpy as npim = Image.open(r"C:UsersAdministratorDesktopgugong微信图片_20190216152248.jpg").convert('L')a=np.asarray(im).astype('float')print(a.shape,a.dtype)(1080, 608) float64#(1080, 608)分别表示高度,宽度

三、图像的手绘效果处理

实现思路步骤:

1、梯度的重构

numpy的梯度函数的介绍

np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 

离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 

而c的梯度是: (c-b)/1

当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。 

代码如下:

grad=np.gradient(a)grad_x,grad_y=gradgrad_x = grad_x * depth / 100.#对grad_x值进行归一化grad_y = grad_y * depth / 100.#对grad_y值进行归一化

2、构造guan光源效果

设计一个位于图像斜上方的虚拟光源光源相对于图像的视角为Elevation,方位角为Azimuth建立光源对各点梯度值的影响函数运算出各点的新像素值

其中:

np.cos(evc.el) : 单位光线在地平面上的投射长度

dx,dy,dz :光源对x,y,z三方向的影响程度

3、梯度归一化

构造x和y轴梯度的三维归一化单位坐标系;

梯度与光源相互作用,将梯度转化为灰度。

4、图像生成

具体详情代码如下:

from PIL import Imageimport numpy as npimport osimport joinimport timedef image(sta,end,depths=10):    a = np.asarray(Image.open(sta).convert('L')).astype('float')    depth = depths  # 深度的取值范围(0-100),标准取10    grad = np.gradient(a)  # 取图像灰度的梯度值    grad_x, grad_y = grad  # 分别取横纵图像梯度值    grad_x = grad_x * depth / 100.#对grad_x值进行归一化    grad_y = grad_y * depth / 100.#对grad_y值进行归一化    A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)    uni_x = grad_x / A    uni_y = grad_y / A    uni_z = 1. / A    vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值    vec_az = np.pi / 4.  # 光源的方位角度,弧度值    dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对x 轴的影响    dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对y 轴的影响    dz = np.sin(vec_el)  # 光源对z 轴的影响    b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化    b = b.clip(0, 255)    im = Image.fromarray(b.astype('uint8'))  # 重构图像    im.save(end)def main():    xs=10    start_time = time.clock()    startss = os.listdir(r"C:UsersAdministratorDesktopgugong")    time.sleep(2)    for starts in startss:        start = ''.join(starts)        sta = 'C:/Users/Administrator/Desktop/gugong/' + start        end = 'C:/Users/Administrator/Desktop/gugong/' + 'HD_' + start        image(sta=sta,end=end,depths=xs)    end_time = time.clock()    print('程序运行了  ----' + str(end_time - start_time) + '   秒')    time.sleep(3)main()程序运行了  ----43.01828205879955   秒  #一共35张图片

最终效果图对比:

最后,你自己动手试试吧?通过此代码为自己画一张手绘图,也可以为自己的家乡或母校画。

参考资料:

http://www.icourse163.org/learn/BIT-1001870002?tid=1001963001#/learn/announce

代码链接:

https://pan.baidu.com/s/1E_aZTRQWOzGV-2GV_iH43w

提取码:64z9

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分