【技术分享】Apollo3 SDK平台添加支持复旦微FM25Q128 SPI Flash的方法

描述


上海润欣科技股份有限公司创研社

本文详细介绍了,如何在Apollo3 SDK v2.0平台上增加对复旦微FM25Q128 SPI Flash支持的方法。本文将结合软件和硬件,阐述如何通过Apollo3片上串行外设MSPI接口以Quad SPI模式访问SPI Flash的底层驱动代码的实现步骤。

 1、  什么是MSPI

MSPI,即Multi-bit SPI的缩写,Apollo3新引入的串行外设,可以支持单线SPIDual SPIQuad SPI,以及八线Octal SPI(可以是单个Octal设备,也可以是两个Quad Pair组成的Octal 设备)等模式,最高速率24MHz,可以外接串行存储设备,如PSRAMSPI Nor Flash等,支持XIP片上直接运行代码。MPSI支持全部的4SPI CPOL/CPHA模式,即模式0-3支持DMA。支持Command Queue2个片选,以Quad-SPI为例,MSPI最多支持两路Quad-SPI,这两路共用一个MSPI CLK。两路QSPI分时操作。MSPI具体的管脚复用图如下图1

SPI Flash

图1 MSPI管脚复用图

2、  MSPI连接SPI FlashQuad SPI四线模式,如图2

 

SPI Flash

2 MSPI采用Quad SPI接口连接外部SPI Flash器件原理图 

3、根据以上图2所示硬件原理图,我们需要对SDK中的BSP库进行相应的修改,将MSPI使用到的相关管脚一一进行分配和初始化,如这里用到的:

GP1    --- CE0 (片选)

GP26   --- DQ1(数据IO1, SPI DO)

GP4    --- DQ2 (数据IO2SPI WP#)

GP22   --- DQ0 (数据IO0SPI DI)

GP24   --- CLK (时钟信号)

GP23   --- DQ3 (数据IO3SPI HOLD#)

打开SDK v2.0目录下的工程libam_bsp,找到文件am_bsp_pins.h,按照上面分配的管脚修改定义:

SPI Flash

SPI Flash

SPI Flash

再在同一工程里面找到am_bsp_pins.c文件,逐一修改以上管脚对应的属性结构体,如下:

SPI Flash

SPI Flash

SPI Flash

SPI Flash

如果不需要修改其他外设接口的管脚定义,保存文件后退出编辑模式,SDK v2.0下的示例代码默认包含BSPHAL库文件进行编译,所以,这里需要重新将libam_bsp工程进行重新编译,假设我们使用Keil MDK编译器,那么生成的库文件为libam_bsp.lib,可以直接包含到其他的Keil MDK示例工程下进行使用。IAR生成的库文件为libam_bsp.a

4、了解复旦微 SPI Flash器件FM25Q128的基本特性

FM25Q128是复旦微电子生产的串行SPI接口Nor Flash存储器,支持单线SPI, 双线Dual SPI和四线Quad SPIQPI)模式,我们采用的是Quad SPI,即器件的QPI模式(4-4-4)

FM25Q128的容量为128Mbit16MB),单个Sector扇区大小为4KB,支持32KB或者64KB大小的Block块,可编程页大小为256字节。Sector扇区,Block块大小和数量的宏定义详见如下代码:

SPI Flash

我们采用的芯片封装和引脚定义如下图3所示;

SPI Flash

3 FM25Q125芯片引脚定义图 

请特别注意管脚WP#HOLD#/RESET#DQ3)的描述

SPI Flash

出厂时,QE位为0,芯片处于单线SPI模式,硬件上,芯片的Pin3WP#信号,Pin7HOLD#/RESET#信号,继续了解WP#HOLD#硬件关键的特点,

SPI Flash

SPI Flash

SPI模式下,如果WP#管脚为低,则禁止改写Status状态寄存器的值;当HOLD#为低时,即使芯片CS片选脚被激活,芯片仍将进入暂停模式,SPI总线无法正常访问SPI Flash,包括读取Status状态寄存器的值,芯片相当于进入了复位状态。因为芯片出厂默认模式是单线SPI模式,因此,我们需要先通过Apollo3MSPI接口的单线SPI模式(1-1-1)来初始化器件,让器件进入QPI模式(4-4-4)后,然后再使用Quad SPI进行访问SPI Flash,以实现利用最高的效率访问SPI Flash外设。SPI的不同接口类型在传输指令码、地址码、数据码时所使用的传输通道数量不同,如下图4所示:

SPI Flash

4 SPI不同接口类型的区别

FM25Q128上电初始化流程如下图所示,要使能芯片的QPI模式,需要使能状态寄存器Status Register-2中的bit1QE,然后使用0x38命令使能进入QPI模式。退出QPI模式可以发送0xFF命令或者发送软件复位序列0x66 + 0x99,如下图5所示。

SPI Flash

5 FM25Q125上电初始化流程

如上所述,初次上电后,Flash芯片处于单线SPI模式,WP#HOLD#管脚可能影响状态寄存器的写入操作,实际调试底层驱动代码的过程中,笔者也发现了这个问题,由于HOLD#没有外接上拉电阻,在SPI模式下Flash芯片的HOLD#脚电平不稳,导致读写状态寄存器时而正常,时而失败,开发板正常,客户的板子失败等现象,调试了很长时间才发现问题根源在于此。我们可以将Apollo3芯片的MSPI接口配置成SPI模式,并将连接到FM25Q128DQ2(WP#)DQ3HOLD#/RESET#)的管脚GP4GP23配置成GPIO输出,使能内部上拉电阻,并且同时输出高电平,让WP#HOLD#管脚处于非激活状态

我们先通过阅读Datasheet来了解一下Apollo3GPIO口结构,以及内部上拉电阻的配置。

SPI Flash

SPI Flash

SPI Flash

SPI Flash

Apollo3的所有的GPIO都可以通过软件来配置(PADnPULL)使能内部上拉电阻(除了GPIO20为下拉),上拉电阻默认状态是禁用的。另外,包含有I2C功能的GPIO的内部上拉电阻是可以选择四种不同阻值的。我们用到的GP4GP23不包含I2C功能,因此不能选择上拉电阻的阻值。经过与AmbiqMicro原厂工程师沟通,了解到内部通用上拉电阻的阻值大约为63KΩ,这个内部的弱上拉足可以保证在SPI模式初始化SPI Flash时,WP#HOLD#/RESET#管脚稳定为高电平状态。参考代码如下:

#define AM_BSP_GPIO_GP23   23

#define AM_BSP_GPIO_GP4    4

 

const am_hal_gpio_pincfg_t g_AM_BSP_GPIO_GP23_HOLD =

{

    .uFuncSel            = AM_HAL_PIN_23_GPIO,

    .eDriveStrength      = AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA,

    .ePullup             = AM_HAL_GPIO_PIN_PULLUP_WEAK,

.eGPOutcfg           = AM_HAL_GPIO_PIN_OUTCFG_PUSHPULL,

.eGPInput            = AM_HAL_GPIO_PIN_INPUT_NONE

};

 

const am_hal_gpio_pincfg_t g_AM_BSP_GPIO_GP4_WP =

{

    .uFuncSel            = AM_HAL_PIN_4_GPIO,

    .eDriveStrength      = AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA,

    .ePullup             = AM_HAL_GPIO_PIN_PULLUP_WEAK,

.eGPOutcfg           = AM_HAL_GPIO_PIN_OUTCFG_PUSHPULL,

.eGPInput            = AM_HAL_GPIO_PIN_INPUT_NONE

};

 

static void ConfigGP23AsGpioOutputForPullHighHoldPin (void)

{

        //

        // Configure the pin as a push-pull GPIO output.

        //

        am_hal_gpio_pinconfig(AM_BSP_GPIO_GP23, g_AM_BSP_GPIO_GP23_HOLD); 

        //

        // Disable the output driver, and set the output value to the high level

        // state.  Note that for Apollo3 GPIOs in push-pull mode, the output

        // enable, normally a tri-state control, instead functions as an enable

        // for Fast GPIO. Its state does not matter on previous chips, so for

        // normal GPIO usage on Apollo3, it must be disabled.

        //

        am_hal_gpio_state_write(AM_BSP_GPIO_GP23, AM_HAL_GPIO_OUTPUT_TRISTATE_DISABLE);

        am_hal_gpio_state_write(AM_BSP_GPIO_GP23, AM_HAL_GPIO_OUTPUT_SET);   // pull high

}

 

static void ConfigGP4AsGpioOutputForPullHighWPPin (void)

{

        //

        // Configure the pin as a push-pull GPIO output.

        //

        am_hal_gpio_pinconfig(AM_BSP_GPIO_GP4, g_AM_BSP_GPIO_GP4_WP);          //

        // Disable the output driver, and set the output value to the high level

        // state.  Note that for Apollo3 GPIOs in push-pull mode, the output

        // enable, normally a tri-state control, instead functions as an enable

        // for Fast GPIO. Its state does not matter on previous chips, so for

        // normal GPIO usage on Apollo3, it must be disabled.

        //

        am_hal_gpio_state_write(AM_BSP_GPIO_GP4, AM_HAL_GPIO_OUTPUT_TRISTATE_DISABLE);

        am_hal_gpio_state_write(AM_BSP_GPIO_GP4, AM_HAL_GPIO_OUTPUT_SET);   // pull high

}

SPI Flash

代码详见SDK v2.0目录下的示例工程mspi_quad_example,文件am_devices_mspi_flash.c

5、  SDK v2.0示例代码mspi_quad_example的基础上添加FM25Q128的支持

am_devices_mspi_flash.h文件中增加器件型号宏定义:#define FUDAN_FM25Q128

以及器件支持的相关操作命令,ID码以及容量宏定义

#if defined (FUDAN_FM25Q128)

//*******************************************************************

//

// Device specific identification.

//

//*******************************************************************

#define AM_DEVICES_MSPI_FLASH_ID                        0x001840A1

#define AM_DEVICES_MSPI_FLASH_ID_MASK                   0x00FFFFFF

 

//*******************************************************************

//

// Device specific definitions for flash commands

//

//*******************************************************************

#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1     0x05    // RDSR1, read STATUS_REGISTER 1

#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2     0x35    // RDSR2, read STATUS_REGISTER 2

#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3     0x15    // RDSR3, read STATUS_REGISTER 3

#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER1    0x01    // WRSR1, write STATUS_REGISTER 1

#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2    0x31    // WRSR2, write STATUS_REGISTER 2

#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER3    0x11    // WRSR3, write STATUS_REGISTER 3

#define AM_DEVICES_MSPI_FLASH_ENABLE_QPI_MODE           0x38    // EQIO, Enable QPI

#define AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE          0xFF    // Disable QPI

 

#define AM_DEVICES_MSPI_FLASH_ENABLE_RESET              0x66    // Enable Reset

#define AM_DEVICES_MSPI_FLASH_RESET                     0x99    // Reset

 

#define AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE     0x50    // Write Enable for Volatile Status Register

 

//*******************************************************************

//

// Device specific definitions for the Configuration register(s)

//

//*******************************************************************

#define AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER1          (0x00)   // the value to clear the status register-1

#define AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2    (0xF2)   // LC = 11b, dummy cycles = 4 for quad enable, 0 for spi mdode

#define AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER3          (0xFC)   // to clear the status register-3, the reserved bits will be bypassed

 

//*******************************************************************

//

// Device specific definitions for the flash size information

//

//*******************************************************************

#define AM_DEVICES_MSPI_FLASH_PAGE_SIZE                 0x100    // 256 bytes, minimum program unit

#define AM_DEVICES_MSPI_FLASH_SECTOR_SIZE               0x1000   // 4K bytes

#define AM_DEVICES_MSPI_FLASH_BLOCK_SIZE                0x10000  // 64K bytes.

#define AM_DEVICES_MSPI_FLASH_MAX_SECTORS               4096     // Sectors within 3-byte address range. 4096 * 4KB = 16MB

#define AM_DEVICES_MSPI_FLASH_MAX_BLOCKS                256      // 256 * 64KB = 16MB

#endif

上电后初始化先清除SR1SR3中的相应的状态位和错误标志位。

说明:状态寄存器SR2-3中的有些位标注为R,其为Reserved Bit,即保留位,不能被软件改写,建议采用先读出SR2-3的值,再使用与或操作置位或者清除可以改写的位,同时保留那些原有标注R的位的值。

SPI Flash

SPI Flash

SPI Flash

SPI Flash

SPI Flash

SPI Flash

am_devices_mspi_flash.c文件中增加对FM25Q128支持的初始化代码:

SPI接口初始化宏定义:

// Configure the MSPI for Serial operation during initialization

am_hal_mspi_dev_config_t  SerialCE0MSPIConfig =    // MSPI SERIAL CE0(SPI mode)

{

    .eSpiMode             = AM_HAL_MSPI_SPI_MODE_0,

    .eClockFreq           = AM_HAL_MSPI_CLK_3MHZ,   // lower speed rate for more stable initialization operation

#if defined(MICRON_N25Q256A)

  .ui8TurnAround        = 3,

#elif defined (CYPRESS_S25FS064S)

  .ui8TurnAround        = 3,

#elif defined (MACRONIX_MX25U12835F)

  .ui8TurnAround        = 8,

#elif defined (FUDAN_FM25Q128)

  .ui8TurnAround        = 8,  // The dummy clocks is 8 under SPI mode by default. will update automatically

#endif

    .eAddrCfg             = AM_HAL_MSPI_ADDR_3_BYTE,

    .eInstrCfg            = AM_HAL_MSPI_INSTR_1_BYTE,

    .eDeviceConfig        = AM_HAL_MSPI_FLASH_SERIAL_CE0,

    .bSeparateIO          = true,

    .bSendInstr           = true,

    .bSendAddr            = true,

    .bTurnaround          = true,

    .ui8ReadInstr         = AM_DEVICES_MSPI_FLASH_FAST_READ,

    .ui8WriteInstr        = AM_DEVICES_MSPI_FLASH_PAGE_PROGRAM,

    .ui32TCBSize          = 0,

    .pTCB                 = NULL,

    .scramblingStartAddr  = 0,

    .scramblingEndAddr    = 0,

};

上电后,选择将MSPI配置为CE0,单线SPI模式,各参数说明如下:

AM_HAL_MSPI_SPI_MODE_0  配置为SPI Mode

AM_HAL_MSPI_CLK_3MHZ 配置较低的SPI速率提高稳定性和兼容性

.ui8TurnAround = 8:芯片出厂LC默认值为00,对应的SPI模式下dummy cycles8

AM_HAL_MSPI_ADDR_3_BYTE 24位即3字节地址码

AM_HAL_MSPI_INSTR_1_BYTE 1字节指令码

AM_HAL_MSPI_FLASH_SERIAL_CE0  单线SPI模式,片选通道CE0

FM25Q128初始化代码如下:

//*******************************************************************

//

// FUDAN FM25Q128 Support

// Added by Roger

//

//*******************************************************************

#if defined (FUDAN_FM25Q128)

//

// Device specific initialization function.

//

uint32_t am_device_init_flash(am_hal_mspi_dev_config_t *psMSPISettings)

{

    uint32_t      ui32Status = AM_HAL_STATUS_SUCCESS;

   

    // workaround for the HOLD# pin bug

    // When read the SPI Flash device at the first time powered-on, the device will present as SPI mode

    // If the WP# or Hold# pin is tied directly to a low level (such as, connect to the ground) during standard SPI

    // or Dual SPI operation, the QE bit should never be set to a 1.

    // Pull the WP# and HOLD# pin of SPI Flash as a high level to prevent hold state

    ConfigGP23AsGpioOutputForPullHighHoldPin();     // added by Roger

    ConfigGP4AsGpioOutputForPullHighWPPin();        // added by Roger

   

    #if 1

    //

    // Reset the Fudan FM25Q128. using the existing api

    //

    if (AM_HAL_STATUS_SUCCESS != am_devices_mspi_flash_reset())

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    // software reset code

    #else 

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_RESET, false, 0, g_PIOBuffer, 0);  // Enable reset

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_RESET, false, 0, g_PIOBuffer, 0);  // Reset

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

    #endif

   

    am_util_delay_us(1000);  // for stable concern, delay 1000us after software reset   

 

    g_ui32SR1 = 0;

    g_ui32SR2 = 0;

    g_ui32SR3 = 0;

   

    am_util_stdio_printf("Dump out the STATUS REGISTER 1 - 3 before configurating:\n\r");

  

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1, false, 0, (uint32_t *)&g_ui32SR1, 1);

    am_util_stdio_printf("STATUS REGISTER 1 is 0x%02X\n", (uint8_t)g_ui32SR1);

   

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);

    am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);

   

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3, false, 0, (uint32_t *)&g_ui32SR3, 1);

    am_util_stdio_printf("STATUS REGISTER 3 is 0x%02X\n", (uint8_t)g_ui32SR3);   

  

    //

    // Enable writing to the Status/Configuration register.

    //

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);  // Non-Volatile

    //ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0);  // Volatile

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    //

    // Configure the Fudan FM25Q128 Status Register-1.

    //

    g_PIOBuffer[0] = AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER1 ;  // Write status register + Data (0x00) --> Clear

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER1, false, 0, g_PIOBuffer, 1);  // SR1

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    //

    // Enable writing to the Status/Configuration register.

    //

    //ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);  // Non-Volatile

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0); // Volatile

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

  

    //

    // Configure the Fudan FM25Q128 Status Register-3.

    //

    g_PIOBuffer[0] = g_ui32SR3 & ~AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER3;  

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER3, false, 0, g_PIOBuffer, 1);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }  

 

    // SPI mode does not need to config the QE bit, move the QE setting to the quad SPI initial code

    #if 0 

    //

    // Enable writing to the Status/Configuration register.

    //

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);  // Non-Volatile

    //ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0);  // Volatile

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }   

 

    //

    // Configure the Fudan FM25Q128 Status Register-2.

    //

    g_PIOBuffer[0] = (uint8_t)g_ui32SR2 | AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2;    // Setting LC and Enable QE(QUAD ENABLE)

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2, false, 0, g_PIOBuffer, 1);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

    #endif      

 

    am_util_stdio_printf("Dump out the STATUS REGISTER 1 & 3 after having been overwritten:\n\r");

    g_ui32SR1 = 0;

    g_ui32SR2 = 0;

    g_ui32SR3 = 0;

   

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1, false, 0, (uint32_t *)&g_ui32SR1, 1);

    am_util_stdio_printf("STATUS REGISTER 1 is 0x%02X\n", (uint8_t)g_ui32SR1);

   

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);

    am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);

   

    ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3, false, 0, (uint32_t *)&g_ui32SR3, 1);

    am_util_stdio_printf("STATUS REGISTER 3 is 0x%02X\n", (uint8_t)g_ui32SR3);

      

    switch (psMSPISettings->eDeviceConfig)

    {

        case AM_HAL_MSPI_FLASH_SERIAL_CE0:

        case AM_HAL_MSPI_FLASH_SERIAL_CE1:

            // Nothing to do.  Device defaults to SPI mode for initializing SPI flash device. Disable QPI mode

            ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE, false, 0, g_PIOBuffer, 0); // Disable QPI, return to SPI

            if (AM_HAL_STATUS_SUCCESS != ui32Status)

            {

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            break;

        case AM_HAL_MSPI_FLASH_DUAL_CE0:

        case AM_HAL_MSPI_FLASH_DUAL_CE1:

            // Device does not support Dual mode.

            return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            //break;

        case AM_HAL_MSPI_FLASH_QUAD_CE0:

        case AM_HAL_MSPI_FLASH_QUAD_CE1:

        case AM_HAL_MSPI_FLASH_QUADPAIRED:

        case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:

       

            am_util_stdio_printf("Check the QE bit in STATUS REGISTER 2.\n");

            // check the QE bit in SR2

            if ( ((uint8_t)g_ui32SR2 & (1<<1)) == 0)

            {

                am_util_stdio_printf("Config the STATUS REGISTER 2 for Quad SPI mode.\n");

                //

                // Enable writing to the Status/Configuration register.

                //

                ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);  // Non-Volatile

                //ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0);  // Volatile

                if (AM_HAL_STATUS_SUCCESS != ui32Status)

                {

                    return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

                }   

 

                //

                // Configure the Fudan FM25Q128 Status Register-2.

                //

                g_PIOBuffer[0] = (uint8_t)g_ui32SR2 | AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2;    // default LC Setting and Enable QE(QUAD ENABLE)

                ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2, false, 0, g_PIOBuffer, 1);

                if (AM_HAL_STATUS_SUCCESS != ui32Status)

                {

                    return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

                }

            }

           

            else

            {

               

                am_util_stdio_printf("QE bit in the STATUS REGISTER 2 has already been enabled.\n");

            }

           

            am_util_stdio_printf("Get the value of STATUS REGISTER 2:\n");

            ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);

            am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);

           

            ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_QPI_MODE, false, 0, g_PIOBuffer, 0); // Enable QPI

            if (AM_HAL_STATUS_SUCCESS != ui32Status)

            {

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            break;

        case AM_HAL_MSPI_FLASH_OCTAL_CE0:

        case AM_HAL_MSPI_FLASH_OCTAL_CE1:

            return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            //break;

    }

 

    return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;

}

 

//

// Device specific de-initialization function.

//

uint32_t am_device_deinit_flash(am_hal_mspi_dev_config_t *psMSPISettings)

{

   uint32_t      ui32Status;

 

    //

    // Reset the Fudan FM25Q128

    //

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_RESET, false, 0, g_PIOBuffer, 0);  // Enable reset

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_RESET, false, 0, g_PIOBuffer, 0);  // Reset

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    // added by Roger

    am_util_delay_us(1000);  // delay 1000us after software reset

   

    //

    // Configure the Fudan FM25Q128 Device mode.

    //

    ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    switch (psMSPISettings->eDeviceConfig)

    {

        case AM_HAL_MSPI_FLASH_SERIAL_CE0:

        case AM_HAL_MSPI_FLASH_SERIAL_CE1:

            // Nothing to do.  Device defaults to SPI mode.

            break;

        case AM_HAL_MSPI_FLASH_DUAL_CE0:

        case AM_HAL_MSPI_FLASH_DUAL_CE1:

            // Device does not support Dual mode.

            return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            //break;

        case AM_HAL_MSPI_FLASH_QUAD_CE0:

        case AM_HAL_MSPI_FLASH_QUAD_CE1:

        case AM_HAL_MSPI_FLASH_QUADPAIRED:

        case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:

            ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE, false, 0, g_PIOBuffer, 0);

            if (AM_HAL_STATUS_SUCCESS != ui32Status)

            {

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            break;

        case AM_HAL_MSPI_FLASH_OCTAL_CE0:

        case AM_HAL_MSPI_FLASH_OCTAL_CE1:

            return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            //break;

    }

 

    return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;

}

#endif

 

uint32_t

am_devices_mspi_flash_init(am_hal_mspi_dev_config_t *psMSPISettings, void **pHandle)

{

    uint32_t      ui32Status;

 

    //

    // Enable fault detection.

    //

#if AM_APOLLO3_MCUCTRL

    am_hal_mcuctrl_control(AM_HAL_MCUCTRL_CONTROL_FAULT_CAPTURE_ENABLE, 0);

#else

    am_hal_mcuctrl_fault_capture_enable();

#endif

 

    //

    // Configure the MSPI for Serial or Quad-Paired Serial operation during initialization.

    //

    switch (psMSPISettings->eDeviceConfig)

    {

        case AM_HAL_MSPI_FLASH_SERIAL_CE0:           // Select CE0 SPI mode

        case AM_HAL_MSPI_FLASH_DUAL_CE0:

        case AM_HAL_MSPI_FLASH_QUAD_CE0:             // Select CE0 Quad mode

        case AM_HAL_MSPI_FLASH_OCTAL_CE0:

            g_psMSPISettings = SerialCE0MSPIConfig;  // Configure the MSPI for Serial operation during initialization 

       

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to initialize MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))

            {

                am_util_stdio_printf("Error - Failed to power on MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &SerialCE0MSPIConfig))

            {

                am_util_stdio_printf("Error - Failed to configure MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to enable MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            am_bsp_mspi_pins_enable(SerialCE0MSPIConfig.eDeviceConfig);  // Set up the MSPI pins for CE0

            break;

        case AM_HAL_MSPI_FLASH_SERIAL_CE1:

        case AM_HAL_MSPI_FLASH_DUAL_CE1:

        case AM_HAL_MSPI_FLASH_QUAD_CE1:

        case AM_HAL_MSPI_FLASH_OCTAL_CE1:

            g_psMSPISettings = SerialCE1MSPIConfig;

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to initialize MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))

            {

                am_util_stdio_printf("Error - Failed to power on MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &SerialCE1MSPIConfig))

            {

                am_util_stdio_printf("Error - Failed to configure MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to enable MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            am_bsp_mspi_pins_enable(SerialCE1MSPIConfig.eDeviceConfig);  // Set up the MSPI pins for CE1

            break;

        case AM_HAL_MSPI_FLASH_QUADPAIRED:

            g_psMSPISettings = QuadPairedSerialMSPIConfig;

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to initialize MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))

            {

                am_util_stdio_printf("Error - Failed to power on MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

 

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &QuadPairedSerialMSPIConfig))

            {

                am_util_stdio_printf("Error - Failed to configure MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))

            {

                am_util_stdio_printf("Error - Failed to enable MSPI.\n");

                return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            }

            am_bsp_mspi_pins_enable(QuadPairedSerialMSPIConfig.eDeviceConfig);  // Set up the MSPI pins

            break;

        case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:

            return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

            //break;

    }

 

    if (AM_HAL_STATUS_SUCCESS != am_devices_mspi_flash_reset())  // software reset the external flash device

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

   

    // added by Roger

    am_util_delay_us(1000);  // for stable concern, delay 1000us after software reset

 

    //

    // Device specific MSPI Flash initialization.

    // Added by Roger

    //

    ui32Status = am_device_init_flash(psMSPISettings);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        am_util_stdio_printf("Error - Failed to initial device specific MSPI Flash.\n");

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

  

    //

    // Initialize the MSPI settings for the SPI FLASH.

    //

    g_psMSPISettings = *psMSPISettings;

 

    // Disable MSPI before re-configuring it

    ui32Status = am_hal_mspi_disable(g_pMSPIHandle);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    // added by Roger

    #if defined (FUDAN_FM25Q128)

    am_util_stdio_printf("Status Register 2 is 0x%02X.\n",(uint8_t)g_ui32SR2);

   

    if ((g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_QUAD_CE0) || (g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_QUAD_CE1))

    {

        am_util_stdio_printf("MSPI operation with Quad SPI mode.\n");

       

        // added by Roger, for updating the dummy clocks according to the LC setting under QPI mode

        switch (((uint8_t)g_ui32SR2 & 0xC0) >> 6)

        {

            case 0:                                   // LC = 00

                g_psMSPISettings.ui8TurnAround = 6;

                break;

            case 1:                                   // LC = 01

                g_psMSPISettings.ui8TurnAround = 8;

                break;

            case 2:                                   // LC = 10        

                g_psMSPISettings.ui8TurnAround = 10;

                break;

            case 3:                                   // LC = 11

                g_psMSPISettings.ui8TurnAround = 4;

                break; 

            default:

                g_psMSPISettings.ui8TurnAround = 6;

                break;

        }

    }

   

    if ((g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_SERIAL_CE0) || (g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_SERIAL_CE1))

    {

        am_util_stdio_printf("MSPI operation with SPI mode.\n");

        // added by Roger, for updating the dummy clocks according to the LC setting under SPI mode

        switch (((uint8_t)g_ui32SR2 & 0xC0) >>6)

        {

            case 0:                                   // LC = 00

            case 1:                                   // LC = 01

            case 2:                                   // LC = 10        

                g_psMSPISettings.ui8TurnAround = 8;

                break;

            case 3:                                   // LC = 11

                g_psMSPISettings.ui8TurnAround = 0;

                break;

            default:

                g_psMSPISettings.ui8TurnAround = 8;

                break;             

        }

    }

   

    am_util_stdio_printf("g_psMSPISettings.ui8TurnAround = 0x%02X.\n", g_psMSPISettings.ui8TurnAround);

    #endif

   

    //

    // Re-Configure the MSPI for the requested operation mode.

    //

    //ui32Status = am_hal_mspi_device_configure(g_pMSPIHandle, psMSPISettings);

    ui32Status = am_hal_mspi_device_configure(g_pMSPIHandle, &g_psMSPISettings);  // modified by Roger

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

    // Re-Enable MSPI

    ui32Status = am_hal_mspi_enable(g_pMSPIHandle);

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    //

    // Configure the MSPI pins.

    //

    am_bsp_mspi_pins_enable(g_psMSPISettings.eDeviceConfig);  // Set up the MSPI pins

 

    //

    // Enable MSPI interrupts.

    //

 

#if MSPI_USE_CQ

 

    ui32Status = am_hal_mspi_interrupt_clear(g_pMSPIHandle, AM_HAL_MSPI_INT_CQUPD | AM_HAL_MSPI_INT_ERR );

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    ui32Status = am_hal_mspi_interrupt_enable(g_pMSPIHandle, AM_HAL_MSPI_INT_CQUPD | AM_HAL_MSPI_INT_ERR );

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

#else

    ui32Status = am_hal_mspi_interrupt_clear(g_pMSPIHandle, AM_HAL_MSPI_INT_ERR | AM_HAL_MSPI_INT_DMACMP | AM_HAL_MSPI_INT_CMDCMP );

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

 

    ui32Status = am_hal_mspi_interrupt_enable(g_pMSPIHandle, AM_HAL_MSPI_INT_ERR | AM_HAL_MSPI_INT_DMACMP | AM_HAL_MSPI_INT_CMDCMP );

    if (AM_HAL_STATUS_SUCCESS != ui32Status)

    {

        return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;

    }

#endif

 

#if AM_CMSIS_REGS

    NVIC_EnableIRQ(MSPI_IRQn);

#else // AM_CMSIS_REGS

    am_hal_interrupt_enable(AM_HAL_INTERRUPT_MSPI);

#endif // AM_CMSIS_REGS

 

    am_hal_interrupt_master_enable();

 

    //

    // Return the handle.

    //

    *pHandle = g_pMSPIHandle;

 

    //

    // Return the status.

    //

    return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;

}

至此,FM25Q128的底层驱动代码与SDK中的MSPI外设API已经对接完成,我们可以操作以下的APIFlash进行擦除扇区,擦除块,擦除全片,读,写等测试。

//SPI Flash初始化

uint32_t

am_devices_mspi_flash_init(am_hal_mspi_dev_config_t *psMSPISettings, void **pHandle);

// 获取SPI Flash的器件ID

uint32_t

am_devices_mspi_flash_id(void);

// SPI Flash扇区擦除。注意:实际上是调用的Block块擦除命令0xD8,擦除单位为64KB

uint32_t

am_devices_mspi_flash_sector_erase(uint32_t ui32SectorAddress);

// SPI Flash全片擦除

uint32_t am_devices_mspi_flash_mass_erase(void);

// 读取SPI Flash内容

uint32_t

am_devices_mspi_flash_read(uint8_t *pui8RxBuffer,

                           uint32_t ui32ReadAddress,

                           uint32_t ui32NumBytes,

                           bool bWaitForCompletion);

 

// SPI Flash写入内容

uint32_t

am_devices_mspi_flash_write(uint8_t *pui8TxBuffer,

                            uint32_t ui32WriteAddress,

                            uint32_t ui32NumBytes);

SPI Flash的相关API操作Demo详见mspi_quad_example工程下的mspi_quad_example.c文件。注意:开启宏定义#define TEST_QUAD_SPI,即为测试Quad SPI模式读写SPI Flash;如果注释掉该宏,则为单线SPI模式读写SPI FlashSPI Flash操作成功后,通过J-LinkSWO输出log信息显示操作结果,截图如下:

SPI Flash

SPI Flash

SPI Flash

后记:

整理一下调试过程中遇到的一些坑:

1SDK v2.0v1.2.12启动代码startup_keil.s作了改动,直接将SDK v1.2.12中调试好的驱动代码放到v2.0中进行编译,导致无法进入MSPI中断服务程序,读取Flash内容时卡死,原因是SDK v2.0中把MSPI中断服务函数名称修改了:void am_mspi0_isr(void)

SPI Flash

2、新的片子FM25Q128在初始化过程中无法正常读取和修改状态寄存器,这是因为芯片默认QE=0,芯片处于单线SPI模式,Pin3WP#脚,Pin7Hold#/RESET#脚,由于Pin7电压不稳定,或者处于低电平状态,导致芯片进入RESET状态,MSPI无法正确访问Flash状态寄存器,导致读写失败!初始化为SPI后,将MCU连接到SPI FlashPin3Pin7IO设置为GPIO输出并使能内部上拉,输出高电平,初始化SPI Flash操作过程中,拉高WP#HOLD#/RESET#管脚,让Flash芯片处于非写保护和RESET/HOLD状态。代码片段示例如下:

SPI Flash

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分