电子说
一套完整的机器视觉系统,都包含哪些硬件?
视觉是人类观察和认知世界的重要手段。随着信息技术的发展,人类逐渐把这种技能赋予计算机、机器人或者其他智能机器,这就是我们今天所要提到的机器视觉技术。
目前机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉技术在信息化时代正扮演着越来越重要的角色。
与计算机视觉相比,机器视觉偏重于计算机视觉技术工程化,能够自动获取和分析特定的图像,对准确度和处理速度要求都比较高,一般而言,计算机视觉多用来识别“人”,而机器视觉则多用来识别“物”。
具体来讲,计算机视觉应用的场景相对复杂,要识别的物体类型也多,形状不规则、规律性不强,有时甚至很难用客观量作为是被的依据,比如识别年龄、性别,对于光线、距离、角度等条件要求较低;而对准确度和处理速度要求都比较高,一般机器视觉的分辨率远高于计算机视觉,而且往往要求实时,处理速度非常关键。
那么一个典型的机器视觉系统应该包括哪些硬件呢?
一个典型的机器视觉系统包括以下五大块:
01
照明
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,已达到最佳效果。光源可分为可见光可不可见光。
02
镜头
工业镜头
FOV=所需分辨率*亚像素*相机尺寸/PRTM(零件测量公差比)
选择镜头时应注意:
①焦距 ②目标高度 ③影像高度 ④放大倍数 ⑤影像至目标的距离 ⑥中心点/节点 ⑦畸变
03
相机
按照不同的标准可分为:标准分辨率数字相机和模拟相机。要根据不同的实际应用场合选择不同的相机和高分辨率相机:线扫描CCD和面阵CDD、单色相机和彩色相机。
04
图像采集卡
图像采集卡是完整的机器视觉系统的一个部件,但是它扮演的角色非常重要,图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等。
05
视觉处理器
视觉处理器集采集卡与处理器与一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图像到存储器,而且计算机也快很多,所以现在视觉处理器用的少了。
什么是机器视觉系统?
机器视觉系统是指通过机器视觉产品(即图像获取装置,分为CMOS和CCD两种)将被获取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉的工作原理:
机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。
机器视觉与计算机视觉的区别?
计算机视觉,主要是对质的分析,比如分类识别,这是一个杯子那是一条狗。或者做身份确认,比如人脸识别,车牌识别。或者做行为分析,比如人员入侵,徘徊,遗留物,人群聚集等。
机器视觉,主要侧重对量的分析,比如通过视觉去测量一个零件的直径,一般来说,对准确度要求很高。我记得以前接触过一个需求: 视觉测量铁路道岔缺口。哥刚毕业的时候在铁路上班,做过控制系统,还开过内燃机车,很清楚道岔缺口的重要性,这玩意儿你说要是测不准,呵呵:)
当然,也不能完全按质或量一刀切,有些计算机视觉应用也需要分析量,比如商场的人数统计。有些机器视觉也需要分析质,比如零件自动分拣。但,计算机视觉一般来说对量的要求不会很高,商场人数统计误差个百分之几死不了人的,但机器视觉真的会,比如那个道岔缺口测量。
全部0条评论
快来发表一下你的评论吧 !