关于通信那些事:什么是“通信(Communication)”?

电子说

1.3w人已加入

描述

什么是“通信(Communication)”?

简单来说,通信就是传递信息。我把我的信息发给你,你把你的信息发给我,这就是通信。

通信的官方定义更加严谨一些——人与人,或人与自然之间,通过某种行为或媒介,进行的信息交流与传递,叫做通信。

也就是说,通信不仅限于人类之间的信息交换,也包括自然万物。

还是从我们人类开始说起吧,毕竟在绝大部分通信场景中,人都是主体。

在人类诞生的那一刻起,通信就是生存的基本需求。新生的婴儿,通过哭声传递饥饿的信息,给自己的母亲,索取母乳和关爱。参与围猎的部落成员,通过呼吼声,召唤同伴的支援和协助。这一切,都属于通信的范畴。

随着人类社会组织单位的不断变大,通信的作用也越来越大。国家之间的合纵连横,亲人之间的思念关怀,都离不开通信。通信的手段,也由面谈这种近距离方式,逐渐发展出烽火、旗语、击鼓、鸣金等多种远距离方式。

这些通信方式,主要是通过视觉或者听觉来实现。这就要求通信双方之间,是可视的,或者,是可以听见的。客观条件的约束,就限制了通信的范围。

而如果采用驿站或信鸽等方式,虽然一定程度上解决了范围和距离的问题,却带来了时效性的问题,无法在很快的时间内送达。

19世纪电磁理论出现并成熟。在此基础上,莫尔斯发明了莫尔斯编码和有线电报,贝尔发明了电话,马可尼发明了无线电报,人类就此开启了用电磁波进行通信的近现代通信时代。通信的距离限制,不断被突破。与此同时,长距离通信的时延,也在不断缩小。

时至今日,我们已经全面进入了信息时代,对通信的需求和依赖变得前所未有的强烈。像手机这样的现代通信工具,作为每个人保持社会联系的纽带,变成了寸步难离的必需品。

不仅是个人,整个社会的运转,都建立在对通信技术的依赖之上。通信技术的先进程度,成为衡量一个国家综合实力的重要标志之一。

我们无法想象,如果通信技术倒退回两百年前,我们的世界将会是怎样的混乱场景。

让我们回到通信的本质。

任何通信行为,都可以看成是一个通信系统。而对于一个通信系统来说,都包括以下三个要素:信源、信道和信宿。

例如下课时,校工打铃:校工就是信源,空气就是信道,而老师和同学们,就是信宿。

那铃声是什么呢?铃声是信道上的信号。这个信号带有信息,信息告诉信宿:该下课了。

更具体一点,振铃就是发送设备,老师和同学们的耳朵,就是接收设备。

是不是所有的消息(数据)都是信息呢?是不是消息越多,信息就越多呢?

不是的。

很多人认为,消息越多,数据越多,信息量就越大,这是一个误区。

信息量的大小,和信息出现的概率,有直接关系。简单来说,随机事件发生的概率越小,信息量就越大。

举个例子,如果我告诉你,“地球是圆的”,这句话,信息量就是0。简而言之,我说的是一句废话。

如果我告诉你,我在某地藏了一亿美金的现金,那么显然,这个信息量就很大了。

通信技术的发展过程,说白了,就是研究如何在更短的时间,传输更大信息量的过程。

为了达到这个目的,信源侧需要不断升级自己的发送设备,信宿需要不断升级自己的接收设备。而信道的介质,也在不断升级。

根据信道介质的不同,我们将通信系统分为有线通信和无线通信。

顾名思义,采用网线、光纤、同轴电缆作为通信介质的,就是有线通信。而采用空气甚至真空的,就是无线通信。

不管是有线还是无线,传输的都是电磁波——在有线电缆中,电磁波是以导行波的方式传播,而在空气(真空)中,电磁波是以空间波的方式传播。

世界上没有真正意义上的“完全”无线通信。无线通信系统中,除了信道部分会有无线环节之外,包括信源、信宿和大部分的信道,其实都是有线的。

就像我们现在使用的手机通信系统,它只有手机和基站天线之间是无线传播,其它环节仍然是有线传播,例如基站到机房,南京机房到上海机房,等等。

既然说到手机通信系统,那我们就多介绍一下。手机通信系统,也叫蜂窝通信系统,因为手机的通信依赖于基站,而基站小区的覆盖范围,看上去有点像蜂窝。

手机通信通常被称为移动通信,移动通信属于无线通信的一种。除了移动通信之外,Wi-Fi通信,对讲机通信,卫星通信,微波通信,也都属于无线通信。

用于无线通信的电磁波,看不见、摸不着、听不到,却速度极快(光也是一种电磁波,秒速30万公里)。但是想要利用好它,并不是那么容易。

最开始有线电报的时代,我们通过电流脉冲的长短组合,来传递一个字母。例如字母a,就是:“· -”,一个点信号,一个长信号。发出一个完整的单词,就要好几秒甚至十几秒的时间。

显然,这种速度是无法接受的,既费时又费力。

“别提了,这破玩意差点害死我”

后来,人们开始用“波”来承载信息。

电磁波

如果按波的振幅来表达0或1,振幅大的代表1,振幅小的代表0,就是调幅(AM)。

如果按波的频率来表达0或1,波形密集的代表1,波形稀疏的代表0,就是调频(FM)。

AM和FM,眼熟了吧?收音机上就是这么标的。

很显然,每秒钟发送的波形越多,传输的0和1就多,信息量就大。换言之,频率越高,速率越快。

很多人问,为什么我们现在要使用高频信号传输信息。上述就是主要原因之一。

不管是AM调幅还是FM调频,都属于我们经常说的调制。解调呢?就是在信宿那端,将信息从已调信号里提取出来。

我们以前上网用的猫(Modem),就是调制解调器,干这个事情的。现在到处热议的手机芯片里面的基带芯片,说白了,也是干这个事情的。

我们目前使用的通信系统,基本上都是数字通信系统,传输的都是数字信号。

数字信号的常用调制方式,就是书上常说的幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的QAM。我们的LTE,还有即将到来的5G,都是用的QAM。

电磁波

这种很多点的图,叫做星座图

传输数据,就像汽车运货,如果想要运输更多货物,一方面,可以让马路变宽,另一方面,也要想办法让自己减重。

有价值的货物当然不能丢,但是,可以减少无价值的载重。就像人与人之间说话,要挑重点的话说,少说废话。

这里,就涉及到编码的技术。

编码分为两种,第一种是信源编码。

我们听到的声音,是音频信号,看到的场景,是图片或视频信号。不同的信号,都有自己的编码方式。

对于音频信号,我们常用的是PCM编码和MP3编码等。在移动通信系统中,以3G WCDMA为例,用的是AMR语音编码。

对于视频信号,常用的是MPEG-4编码(MP4),还有H.264、H.265编码。在政府企业常用的视频会议电话系统(也是通信系统的一种)中,现在普遍开始采用的,就是H.265编码。

电磁波

除了信源编码之外,就是信道编码了。

信源编码是删除冗余信息,而信道编码恰好相反,是增加冗余信息。

为什么呢?

这里,就要说到无线信道的复杂性了。

相对于有线信道的可靠和稳定,无线信道的问题要多很多。

无线信号在空气中的传输,随着传输距离的增加,本身就会有损耗。这种损耗,也叫做路径损耗(路损)。

传输的过程中,遇到障碍物,如果穿透它,也会产生损耗,叫穿透损耗。

电磁波

损耗和无线信号传输的几种效应有密不可分的关系。例如阴影效应、多径效应、远近效应,还有大家一定听说过的多普勒效应。限于篇幅和理解难度,不多做介绍。

除了这些电磁波特性造成的衰耗之外,无线通信还容易遇到各种干扰和噪声。例如电磁干扰和频段挤占等。

信道编码,目的就是要对抗信道的各种不利影响。

电磁波

增加冗余信息,就像在货物边上塞保护泡沫,保护货物的正确运输。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。

电磁波

去年闹得沸沸扬扬的联想5G标准投票事件,华为主推的Polar码,还有高通主推的LDCP码,说的都是信道编码。3G/4G时代处于核心地位的Turbo码,也是信道编码。

对抗衰弱的办法,除了信道编码之外,还有分集技术和均衡技术。像现在备受关注的MIMO(多天线收发技术),就属于空间分集技术中的一种。简单来说,就是一个不够就用两个,两个不够就用四个。

电磁波

说完了调制和编码,我们最后再来说说复用和多址。

前面我们所说的,是一对一的通信模型。但实际生活中,我们不可能一个通信系统只给两个人用。我们会尽可能让更多的人可以同时使用它。这就需要用到多址技术。

说到多址,大家一定听说过这么几个词:FDMA、TDMA、CDMA、SDMA、OFDMA……

没错,这些都是多址技术,分别是:

FDMA:频分多址

TDMA:时分多址

CDMA:码分多址

SDMA:空分多址

OFDMA:正交频分多址 

多址,就是Multiple Access(多接入)。

简单举例,我们把频率资源想象成一个房间,如果把房间分割成不同的空间,不同的用户在不同的房间聊天,这就是频分多址(FDMA)。

电磁波

如果这个房间里,某一时间让某一个人说话,下一时间段,让另一个人说话,就是时分多址。

电磁波

如果大家都用各自的语言说话,有的人说英语,有的人说法语,有的人说中文,那就是码分多址。

电磁波

利用天线的朝向来区分不同用户,叫空分多址。(不好意思,房间的例子不适用这个)

把空间划分成不同房间,房间和房间之间有重合,以便塞下更多的房间,这个叫做正交频分多址。

电磁波

而复用(Multiplexing)又是什么呢?复用和多址的区别,就是复用针对资源,而多址针对用户。

举个例子,将10MHz的频率资源,划分成5个2MHz,作为子信道,这种做法,叫复用。不同的用户使用这些子信道,每个子信道变成了用户的“址”,这叫多址。

好啦,以上就是今天文章的所有内容。相信并不难懂吧?

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分