测量仪表
示波器和频谱仪都是电子测试测量中必不可少的测试设备,分别用于观察信号的时域波形和频谱。时域波形是信号最原始的信息,而频谱的引入主要是为了便于分析信号,比如谐波和杂散的测试,从时域上很难观察到,但是从频域就可以非常明了的区分开。
示波器除了具有采集信号的基本功能,还可以对信号进行FFT变换得到频谱,从而兼具频谱分析功能。几乎所有的中高端示波器均支持FFT频谱分析。本文将要介绍的频谱分析功能——Spectrum View,是一款功能强大的频谱分析工具,它的引入开启了全新的时频域信号分析。
结合了TEK049 ASIC创新平台及TEK061低噪声前端放大芯片的频谱模式-- Spectrum View是获得高动态、低噪底的强有力保证。
图1. TEK049平台和超低噪声前端TEK061
Spectrum View特性一览
从实现方法上讲,Spectrum View也是采用FFT,但并不是直接处理采集的样点,而是先通过数字下变频(DDC技术) 得到IQ数据,然后经过FFT得到信号频谱。这也是相对于传统FFT的一大特色。与原始采集信号相比,IQ信号携带的频率要低很多,对IQ数据重采样无需太高采样率,大大降低了数据量,提高了处理速度。
无论与频谱仪比较,还是与示波器传统的FFT方法相比,Spectrum View都具有自己的特色:
图2. Spectrum View操作界面
时频域并行分析
图3给出了信号采集和处理架构示意图,模拟信号经过ADC转换为数字信号后,时域和频域是并行处理的,从而可以独立设置时域和频域捕获时间。Spectrum View支持滑动Spectrum Time的位置,对不同时段的信号作频谱测试,这使得对信号进行时频域联动测试成为可能。
图3. 信号采集和分析架构示意图
图4. 时域、频域和调制域联动分析
作为示例,图4给出了一个跳频信号分析结果,同时给出了时域波形、频谱及跳频序列的结果。图中红色标记处为Spectrum Time,即用于FFT分析的时间,其位置是可以移动的,测试的频谱就是当前位置对应的频谱。拖动Spectrum Time的位置,可以分别对不同的频点进行观测,当前观测的是频率切换过程中的频谱变化。
多通道频谱测试
频谱应用过程中,Spectrum View与频谱仪FFT模式下的数据处理过程相同,虽然测试动态不如频谱仪,但是Spectrum View有着自己的优势,比如可以测试极低频率的信号,具有丰富灵活的探测方式,以及时频分析的相关性。此外,Spectrum View还支持多通道频谱测试,这得益于TEK049支持同时对每个通道的信号作频谱分析处理。
类似于TEK049的多通道时域波形显示方式,所激活的频谱既可以“堆栈 (Stacked) ”显示,也可以“重叠 (Overlay) ”显示。图5同时观测了两个通道的时域波形及频谱,并且采用了重叠显示,以便于频谱之间的对比。
所有通道的频谱共用相同的Span、RBW、FFT Window及Spectrum Time,这一点与时域要求多通道间共用采样率、水平时基及触发类似。尽管如此,各个通道的中心频率可以独立设置,默认是联动的,也可以根据需要设置为不同值。
Spectrum View支持自动搜索峰值,最多支持11个Peak Marker,幅值最大的频点自动标记为“Ref. Marker”,其它Marker的频点和幅值可以显示为绝对值,也可以显示为相对于“Ref. Marker”的相对值。如果所需要的Marker数目超过限制,还可以通过使用频域的cursor确定频率和幅值。
图5. 同时观测两个通道的时域波形及频谱
小结
文中介绍了Spectrum View功能,阐述了与传统示波器FFT方法的区别及优势。Tek049平台及低噪声放大前端Tek061的引入,可使得示波器达到低噪声水平,这是测试微弱信号频谱的重要前提。时域与频域并行处理架构,使得时频域数据捕获相互独立,同时Spectrum Time的可移动性,使得示波器具备了多域联动分析功能。
全部0条评论
快来发表一下你的评论吧 !