传感器
传感器的定义
信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。
传感器的分类方法很多.主要有如下几种:
(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器
(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:
光敏传感器——视觉
声敏传感器——听觉
气敏传感器——嗅觉
化学传感器——味觉
压敏、温敏、 传感器(图1)
流体传感器——触觉
敏感元件的分类:
物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
1)光纤传感器
光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高。抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小。耗电少,光路有可挠曲性,以及便于实现遥测等。
光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器。称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。
光纤传感器可以测量多种物理量。目前已经实用的光纤传感器可测量的物理量达70多种,因此光纤传感器具有广阔的发展前景。
2)红外传感器
红外传感器是将辐射能转换为电能的一种传感器,又称为红外探测器。常见的红外探测器有两大类,热探测器和光子探m器。热探测器是利用人射红外辐射引起探测器的敏感元件的沮度变化,进而使有关物理参数发生相应的变化,通过测量有关物理参数的变化来确定红外探测器吸收的红外辐射。热探测器的主要优点是响应波段宽,可以在室沮下工作,使用方便。但是,热探测器响应时间长,灵敏度较低,一般用于红外辐射变化缓慢的场合。如光谱仪、测温仪、红外摄像等。光子红外探测器是利用某些半导体材料在红外辐射的照射下,产生光子效应,使材料的电学性质发生变化,通过测最电学性质的变化,可以确定红外辐射的强弱。光子探测器的主要优点是灵敏度高,响应速度快,响应频率高。但一般需在低温下_L作,探测波段较窄,一般用于侧温仪、航空扫描仪、热像仪等。红外传感器广泛用于测温、成像、成分分析、无损检测等方面,特别是在军事上的应用更为广泛,如红外侦察、红外雷达、红外通信、红外对抗等。
3)气敏传感器
气敏传感器是指能将被侧气体浓度转换为与其成一定关系的电量输出的装置。气敏传感器的性能必须满足下列条件:
(1)能够检渊易爆炸气体的允许浓度、有害气体的允许浓度和其他基准设定浓度。并能及时给出报薯、显示与控制信号;
(2)对被侧气体以外的共存气体或物质不敏感;
(3)长期稳定性好、重复性好
(4)动态特性好、响应迅速;
(5)使用、维护方便,价格便宜等。
4)生物传感器
生物传感器是利用生物或生物物质做成的、用以检测与识别生物体内的化学成分的传感器。生物或生物物质是指酶、微生物、抗体等,被侧物质经扩散作用进人生物敏感膜,发生生物学反应(物理、化学反应),通过变换器将其转换成可定量、可传输、处理的电信号。按照所用生物活性物质的不同,生物传感器包括酶传感器、微生物传感器、免疫传感器、生物组织传感器等。酶传感器具有灵敏度高、选择性好等优点,目前已实用化的商品达200种以上,但由于酶的提炼工序复杂,因而造价高,性能也不太稳定。微生物传感器与酶传感器相比,价格便宜,性能稳定,它的缺点是响应时间较长(数分钟),选择性差,目前微生物传感器已成功应用于环境监测和医学中,如测定水污染程度、诊断尿毒症和搪尿病等。免疫传感器的基本原理是免疫反应,目前已研制成功的免疫传感器达儿十种以上。生物组织传感器制作简便,工作寿命长,在许多情况下可取代酶传感器,但在实用化中还存在选择性差、动植物材料不易保存等问题。目前生物传感器的开发与应用正向着多功能化、集成化的方向发展。半导体生物传感器是将半导体技术与生物技术相结合的产物,为生物传感器的多功能化、小型化、微型化提供了重要的途径。
5)机器人传感器
机器人传感器是一种能将机器人目标物特性(或参量)变换为电量输出的装置,机器人通过传感器实现类似于人类的知觉作用。机器人传感器分为内部检测
传感器和外界检测传感器两大类。内部检测传感器是在机器人中用来感知它自己的状态,以调整和控制机器人自身行动的传感器。它通常由位置、加速度、速度及JR力传感器组成。外界检测传感器是机器人用以感受周围环境、目标物的状态特征信息的传感器。从而使机器人对环境有自校正和自适应能力。外界枪侧传感器通常包括触觉、接近觉、视觉、听觉、嗅觉、味觉等传感器。机器人传感器是机器人研究中必不可缺的重要课题,需要有更多的、性能更好的、功能更强的、集成度更高的传感器来推动机器人的发展。
6)智能传感器
智能传感器是一种带有微处理机的,兼有信息检测、信息处理、信息记忆、逻辑思维与判断功能的传感器。本书第9章将对这种传感器进行详细阐述。
3.数字传感器
数字式传感器是指能把被测(模拟)量直接转换成数字徽输出的传感器。数字式传感器是检测技术、微电子技术和计算机技术相结合的产物,是传感器技术发展的另一个重要方向。
数字式传感器可分为三类:一是直接以数宇量形式输出的传感器,如绝对编码器可以将位移鳍直接转换成数字量。二是以脉冲形式愉出的传感器。如增量编码器、光栅、磁栅和感应同步器可以将位移量转换成一系列计数脉冲,再由计数系统
所计的脉冲个数来反映被侧量的值;三是以频率形式输出的传感器,能把被测量换成与之相对应的、且便于处理的频率输出,因此也叫做频率式传感器。数字式传感器在机床数控、自动化和计量、检测技术中得到日益广泛的应用。
全部0条评论
快来发表一下你的评论吧 !