AI芯片及平台你了解多少

人工智能

636人已加入

描述

从平安城市到智能交通,从互联网+到智慧金融,从智慧社区到智慧城市,什么样的驱动力在引领行业快速发展?无论是城市级解决方案还是行业解决方案,其系统平台都需要承载、接收处理、反馈庞大的信息数据量,无疑AI芯片作为计算力的硬件基础,在智慧城市建设中的重要性不言而喻,AI芯片无疑将与智慧城市深度捆绑共发展。以下是一些AI增强型芯片及平台简要介绍,展示了目前市场上从移动端到企业级应用的各种神经网络解决方案:

华为麒麟970:

这是华为消费业务事业部的首个移动AI计算平台,采用专用神经处理单元,可将云端AI与本机AI处理有机结合。麒麟970包括一个八核CPU和新一代12核GPU。该芯片组以更低的功耗,更快地提供相同的AI计算任务。基准图像识别测试表明,麒麟970每分钟可处理2,000张图像。

除了在自己的手机中使用新的AI芯片组外,华为还将移动AI定位为开放平台,为开发人员和合作伙伴提供技术。

英特尔Nervana神经网络处理器(NPP):

英特尔Nervana NNP专为深度学习而设计,没有标准的缓存层次结构,其片上存储器由软件管理。 “更好的内存管理使该芯片能够实现海量计算的高利用率,”英特尔宣称。 “这可以为深度学习模型提供更快的训练时间。”

除了新的存储器架构外,英特尔还开发了一种新的数字格式Flexpoint,它可以显著提高芯片的并行度,同时降低每次计算的功耗。英特尔表示,由于单个芯片的神经网络计算主要受功耗和内存带宽的限制,因此Flexpoint可为神经网络任务提供更高的吞吐量。英特尔这一新设计的目标是“获得高计算利用率并支持多芯片互连的真实模型并行性”。

英特尔Movidius VPU:

英特尔正在与微软合作,将微软Windows ML与英特尔的Movidius视觉处理单元(VPU)相结合来推动边缘AI推理。英特尔Movidius Myriad X VPU是一款专门用于加速边缘AI应用的芯片,它声称是业界首款具有专用神经计算引擎的系统级芯片解决方案,可用于边缘深度学习推理的硬件加速。 “这款第三代VPU可以高速和低功耗运行深度神经网络,以减轻其它硬件的特定AI处理负担,”英特尔表示。

英特尔还会针对通用机器学习和推理继续优化其Xeon可扩展处理器和数据中心加速器。

Qualcomm骁龙845:

高通的第三代AI移动平台据称在AI性能上比上一代SoC提升了3倍。

除了支持Google TensorFlow和Facebook Caffe / Caffe2框架外,骁龙神经处理引擎(NPE)SDK现在还可以支持Tensorflow Lite和新的开放式神经网络交换(ONNX)标准,可让开发人员轻松选择自己喜欢的AI框架,包括Caffe2、CNTK和MxNet等。此外,它还支持谷歌的Android NN API。骁龙845目标应用包括智能手机、XR耳机和始终联网的PC等。

为了安全起见,骁龙845现在还提供了一个硬件隔离子系统,即安全处理单元(SPU),它为高通的移动安全方案增加了“在现有层上的安全阀门特性”。

高通的AI Engine包括几个硬件和软件组件,其设备端AI处理性能已经在骁龙845上体现出来,将支持包括845、835、820和660在内的移动平台。 AI Engine支持Snapdragon系列核心硬件架构,即Hexagon矢量处理器、Adreno GPU和Kryo CPU。其软件组件包括Snapdragon神经网络处理引擎、Android神经网络API和Haxagon神经网络。

由于采用了异构计算,骁龙845的新架构带来了显著的性能改进。例如,高通声称新的相机和视觉处理架构在视频捕捉、游戏和XR应用方面,功耗比上一代降低了30%,新的Adreno 630也让图形处理性能和功效提升高达30%。

三星Exynos 9系列:

2018年初,三星电子发布了最新的高端应用处理器(AP)Exynos 9系列9810,主要面向AI应用和富媒体内容。这款移动处理器是三星的第三代定制CPU(2.9 GHz),内置超高速千兆LTE调制解调器和深度学习增强的图像处理功能模块。

该处理器采用新的八核CPU,其中四个是第三代定制内核,频率可以达到2.9 GHz,另外四个针对效能进行了优化。“通过扩展流水线并改善高速缓存的架构,单核性能提升了两倍,多核性能也比其前代产品提高了约40%,”三星表示。

该芯片还增加了一些新功能,包括通过神经网络深度学习来增强用户体验,并通过单独的安全处理单元来提高安全性,以保护个人数据安全,比如面部、虹膜和指纹信息。Exynos 9系列的9810目前已经量产。

这些是目前已经上市的一些AI处理器。开发人员可以为其特定的嵌入式AI项目找到最合适的AI芯片。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分