光电显示
硅光电倍增管
硅光电倍增管(Silicon photomultiplier,国际上简称SiPM),HAMAMATSU根据原理叫做MPPC(multi-pixel photon counter)是一种新型的光电探测器件,由工作在盖革模式的雪崩二极管阵列组成,具有增益高、灵敏度高、偏置电压低、对磁场不敏感、结构紧凑等特点。它发明于二十世纪九十年代末,广泛应用于高能物理及核医学(PET)等领域,最近几年来在核医学领域发展迅速,被广泛认为是可以未来极微弱光探测器的发展方向。
高温光电倍增管
常规的光电倍增管一般的使用温度是-30℃-50℃,如果常规的光电倍增管超过50℃工作,首先噪声会变的非常大;其次高温也会加速光电倍增管阴极和倍增级材料的性能退化,降低光电倍增管寿命。在我国一般的石油勘探都要达到3500m左右的地层,而在这个地层下温度高达175℃,常规的光电倍增管就无法满足要求了,为了这样的应用环境,我们开发了耐高温、耐振动的高温光电倍增管产品。
低温光电倍增管
低温作用下光电倍增管的阴极面电阻会变的非常大,面电阻增大会阻碍阴极电流的流出,所以常规的光电倍增管在低温下工作时候,阴极线性电流会变的非常小,极大限制了光电倍增管的应用,尤其是在一些类似液氙、液氩环境中进行的直接暗物质探测的试验中。滨松公司通过低温碱源技术,以及在阴极面内部镶嵌金属辐条技术,大大的降低了低温下阴极面的面电阻,使光电倍增管低温下使用成为了可能。
低本底辐射光电倍增管
低辐射光电倍增管是随着宇宙射线探测、暗物质探测应用而生的,在我们自然界中存在着大量的天然放射性物质,铀系、钍系、钾等物质是自然辐射的主要来源,当然在我们常规的玻璃管壳中也存在较高的自然辐射本底,然而由于辐射与光阴极面反应截面很小,自然辐射对于我们常规的光探测几乎是没有影响的,但是对于闪烁测量,尤其是对本底要求很高的暗物质检测的试验中,这些本底辐射可能就是致命的,会对有效信号造成干扰,从而影响实验的效果。滨松公司一方面采用无钾玻璃作为光电倍增管管壳来降低本底,另一方面为了进一步降低本底,滨松公司采用金属作为光电倍增管外壳、用陶瓷作为基板,通过这样的措施可以将本底降到常规光电倍增管的1/10以下。
位置检出型光电倍增管
光电倍增管大多数情况下是作为点探测器使用的,然而像pet、伽马相机等既要判断入射光电强度,又要判断光斑位置的应用,我们可以采用在闪烁体技术以及计算机数据处理等方法,用常规光电倍增管实现应用;如果我们要达到更好的位置分辨效果,就需要位置检测型光电倍增管了。位置检测型光电倍增管一般采用通道式的打拿极结构,这样的结构可以有效地把电子倍增过程约束到一个很小的空间内,这样可以降低通道间的串扰,根据阳极结构的不同我们也把位置检测型的光电倍增管分为多阳极光电倍增管和位敏型的光电倍增管,多阳极光电倍增管采用多个独立的阳极作为输出,而位敏型的光电倍增管则采用十字金属板的阳极,通过x、y轴信号的大小来判断光的位置和强度。
mcp型光电倍增管
时间响应特性和时间分辨能力是光电倍增管非常重要的参数,尤其是用在一些荧光寿命检测或者是快速时间响应的应用中,例如系统事业部生产的Q-τ(荧光寿命分析仪),就利用了mcp-pmt的高时间分辨能力。mcp(微通道板)是一种通道式的电子倍增系统,能够对带点粒子、X射线、极紫外等射线进行探测,同时作为电子倍增系统具有极高的时间分辨率,可以达到Ps级别,利用MCP作为倍增系统的光电倍增管,不仅可以探测光,同时也具有时间分辨率高的特点。
混合型光电倍增管
混合型光电倍增管在我们销售过程中不太常见,不过由于其能量分辨率高、时间响应速度快等特点,在高能物理研究领域有着非常重要的地位。从结构上看混合型光电倍增管由前级的光电阴极、电子加速系统、半导体雪崩系统、输出系统构成。混合型光电倍增管阴极接收光子产生光电子,电子在高压加速系统中加速,高能量的电子轰击半导体,利用雪崩效应产生大的增益,最后电子由输出系统输出。
μ-PMT是mems技术和真空电子管技术的完美结合,他利用mems技术在硅晶片上加工打拿极,利用真空电子管技术形成光阴极以及倍增级。虽然他仅仅手指大的体积,但是他可以实现106倍的增益。μ-pmt为光电倍增管的发展开辟了一条新的道路,使我们看到光电倍增管微小化、集成化、柔软化成为了可能,也使我们看到了光电倍增管更广的发展和未来。
全部0条评论
快来发表一下你的评论吧 !