高速无线设计的“白皮书”

描述

“更快”是每个系统设计师必备的词汇,基于FPGA的设计亦是如此。如果您经常试图从FPGA设计中最大化地发掘每个MHz的性能,那么无疑Xilinx刚发布的一个白皮书您一定会非常感兴趣。它的题目是“利用赛灵思All Programmable FPGA 和 SoC 实现高速无线电设计( Enabling High-Speed Radio Designs with Xilinx All Programmable FPGAs and SoCs”。如果您正在设计高速无线电蜂窝系统等,您就该看下这份白皮书。但其中的指南和技巧远不只适用于无线设计,它还适用于使用可编程逻辑设计的各个高速系统。

白皮书指出的宗旨是“如果符合一些简单的设计原则,高速无线设计可以很容易地建立在7系列FPGA架构上。Xilinx公司已经创建了典型无线数据路径的设计范例,表明中速级(-2)器件上使用的几乎100%的 slice资源都支持500 MHz以上的时钟频率。

然而,这个白皮书中的内容适用于所有数据路径设计。

白皮书中的示例架构是单天线路径DUC (数字上变频器)架构,支持三种不同的时钟速率: 245.76 MHz、368.64 MHz、和491.52 MHz。该设计利用Xilinx System Generator工具中的IP (FIR编译器)、结构元件(如,DSP48基元的实例化)、接口VHDL代码等进行构建。白皮书显示DUC设计按照三个时钟速率实现的关键的利用率指标:

赛灵思

首先需要注意的是,一般来说DSP48 slice数与时钟速率成反比。快RAM资源也按照阶跃函数随时钟速率降低。这在无线电信号处理设计中较常见,其中块RAM基本上用来按照相对高的采样率存储大量函数运算的系数集合,例如,DDS(直接数字合成器)的正弦/余弦值,峰值抵消脉冲产生器中的CFR (波峰因数衰减)系数,或DPD (数字预失真)模型中的非线性函数抽样。

该分析不象逻辑资源那样简单。当时钟频率从368.64转换至491.52 MHz(1.33时钟比) ,按照比例LUT和FF的数据量分别减少了1.34和1.44倍。将时钟速率从245.76放大一倍至491.52 MHz,这些数据减少了1.8倍和1.7倍。这种非线性行为基本上是为执行信号处理控制逻辑,不需要按照时钟频率进行线性放大。

信号采样率也影响资源利用率。比如,采样速率为25 Msamples/sec的滤波器带宽在250 MHz运行时与带宽在500 MHz运行时相比所需的逻辑资源略降低两倍。采样速率为500 Msamples/sec的多相实现带宽在250 MHz运行时与带宽在500 MHz时相比,所需的逻辑资源增加两倍。对逻辑资源使用的一阶估计是时钟频率增加x倍相当于逻辑利用率减少0.85至1.1倍。

这些设计数据加上白皮书内的更多数据显示在设计基于FPGA的高性能系统时的常用建议:

• 适当的流水线程序当然是设计高速程序的关键因素。

• 需要构建一个以上块RAM(block RAM,)的存储时,可通过选择最大限度地减少数据复用和资源利用的配置优化速度。举例来说, 存储16位数据的16K存储器最好使用16K × 1位的块RAM进行构建,而不是1K × 16位的块RAM。

• DSP slice逻辑本质上可支持较高的时钟速率。逻辑电平与数据路由路径的数量限制了速度,因此在构建高速设计时应在每一个或两个LUT电平上插入一个寄存器。

• 定义合理的层次结构,按照逻辑分区将设计划分成相应的功能模块。这种层次结构提供便于在层次边界寄存输出的方法,从而限制特定模块的关键路径。这样分析和修复在单一模块中定位的时序路径就很容易。实际上,定位超高时钟速度时,应在层次结构的一些层级使用多个寄存器级,以优化时序并为后端工具留下更多设计空间。好的设计层次结构应该将相关的逻辑集成在一起,使得区域分组和逻辑压缩更为有效。

• 建立适当的层次结构可在多个模块时获取可重复结果。

• 在模块级应用实现属性,可令代码简单并具可扩展性,该属性可传播该模块中声明的所有信号。

• 良好的时钟管理和时钟分配方法至关重要。

• 尽可能减少独立主时钟数量。

• 将时钟元件放在设计层次结构的顶层,以便在多个模块共享时钟,这将减少所需的时钟资源,提高时序性能,并降低资源和功率利用率。

• 在不相关时钟域之间使用适当的再同步技术。

• 同样的,必须定义足够多的重置策略。一般情况下,不需要重置每个寄存器。重置寄存器不需要创建高扇出 nets,原因是那样会降低时序性能,提高路由复杂性。只有在重置绝对必要的时候再进行重置。

• 最小化复位网络的大小。

• 避免全局复位。

• 优选同步复位,实际上对DSP48逻辑片和块RAM是强制的。

• 限制时钟“使能”的使用。实际上这条规则难以实现,原因是在多周期实现中时钟“使能”通常需要评估数据样本或操作符输出。实现有效的降低功耗技术很有效。在任何情况下,必须适当寄存时钟使能信号以删除高扇出 nets。

因此,如果您正在开发基于FPGA的高速设计,即使不是数字射频应用,您有必要尽快下载和阅读上述白皮书以开始您的设计—— “利用赛灵思All Programmable FPGA 和 SoC 实现高速无线电设计”。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分