机器人
当前,全球机器人市场规模持续扩大,工业机器人市场增速稳定,服务机器人增速突出。2018 年,全球机器人市场规模达 298.2 亿美元, 2013-2018 年的平均增长率约为 15.1%。 在装备制造领域,机械臂凭借强大的负重能力和精准的抓取操作代替着工人的双手;在物流领域,智能仓储机器人和无人搬运车不断提高着运输效率;在生活服务领域,家用清洁机器人和服务机器人正成为许多家庭的私人保姆和小秘书。
机器人 3.0(2015-),伴随着感知、计算、控制等技术的迭代升级和图像识别、自然语音处理、深度认知学习等新型数字技术在机器人领域的深入应用, 机器人领域的服务化趋势日益明显,逐渐渗透到社会生产生活的每一个角落。在机器人 2.0 的基础上,机器人 3.0 实现从感知到认知、推理、决策的智能化进阶。
当前,全球机器人市场规模持续扩大,工业机器人市场增速稳定,服务机器人增速突出。2018 年,全球机器人市场规模达 298.2 亿美元, 2013-2018 年的平均增长率约为 15.1%。 在装备制造领域,机械臂凭借强大的负重能力和精准的抓取操作代替着工人的双手;在物流领域,智能仓储机器人和无人搬运车不断提高着运输效率;在生活服务领域,家用清洁机器人和服务机器人正成为许多家庭的私人保姆和小秘书。
从整个技术发展和市场环境看,机器人产业拥有以下发展推力:1、成熟的生态系统;2、老龄化人口趋势和新兴市场;3、更多智能产品互联和智能家庭建设;4、人工智能、自然语言理解能力的增强 。
机器人 3.0 预计将在 2020 年完成, 在此之后, 机器人将进入 4.0 时代, 把云端大脑分布在从云到端的各个地方,充分利用边缘计算去提供更高性价比的服务,把要完成任务的记忆场景的知识和常识很好的组合起来,实现规模化部署。 机器人除了具有感知能力实现智能协作, 还具有理解和决策的能力,达到自主的服务。 在某些不确定的情况下,它需要叫远程的人进行增强,或者做一些决策辅助,但是它在 90%,甚至 95%的情况可以自主完成任务。
要达到这一目标, 首先需要利用人工智能和 5G 技术。 利用人工智能技术提高机器人本体感知能力的同时, 提升个性化自然交互能力。利用 5G 技术, 大大缩短从终端到接入网的时间,带宽大幅度上升,很多东西可以放到边缘端,加入更多的计算能力,包括云端大脑的一些扩展,助力机器人规模化部署。
类似互联网的三级火箭发展模式,第一阶段——关键场景, 把握垂直应用,提高场景、任务、能力的匹配,提高机器人在关键应用场景的能力,扩大用户基础;第二阶段——人工增强,通过加入持续学习和场景自适应的能力,延伸服务能力,取代部分人力,逐步实现对人的替代,让机器人的能力满足用户预期; 第三阶段——规模化, 通过云–边–端融合的机器人系统和架构,让机器人达到数百万千万级水平,从而降低价格成本,实现大规模商用。
IoT 应用的快速发展,使得大量数据在网络边缘产生,推动了边缘计算的产生和发展。边缘计算的提出始于 4G 时代,将计算和存储资源部署到网络边缘,不仅可以减少核心网和互联网上的流量,还可以显著降低传输时延, 提高网络可靠性。
低时延的业务需要终端、移动蜂窝网(接入网和核心网)、互联网、数据中心的端到端的保障。目前的测试结果表明 5G 手机和基站的数据通路延时可以达到 4 毫秒,在 URLLC 模式下,手机和基站的延时可以达到 1 毫秒以下, 相比 4G 的 20毫秒提高了 20倍左右。对于互联网和数据中心的时延,一般情况下由于地理位置分布广和未针对低时延优化,从核心网网关到互联网数据中心可在几十到几百毫秒之间。在 5G 中,其核心网引入了分布式网关,网关可以下沉到基站附近,边缘服务器可以直接连接到分布式网关上,大大降低网络的端到端时延。
云–边–端一体化构建了一个通过机器人提供多样化服务的规模化运营平台。其中,服务机器人本体是服务的实施者,而实际功能则根据服务的需要无缝地在终端计算(机器人本体)、边缘计算和云计算之间分布和协同。机器人系统类似现在智能手机上的各种 APP,主要关注如何实现高性价比的多模态感知融合、自适应交互和实时安全计算。
自适应交互: 为了支持机器人的个性化服务和持续学习能力, 需要将感知模块的输出与知识图谱结合对环境和人充分理解,并且逐步提取和积累与服务场景和个人相关的个性化知识。通用知识和较少变化的领域知识应该存放在云端,而与地域和个性化服务相关的知识应该存放在边缘或者终端。无论知识存放在哪里,在机器人系统中应该有统一的调用接口,并可以保证实时通讯。基于 ROS2 构造涵盖终端和网络侧的软件系统框架可以满足未来的需求。
实时安全计算: 未来的服务机器人应用将有大量需要实时响应的情形(如语音交互、协同操作等),因此需要在边缘服务器部署相应的加速硬件。同时,机器人也将处理大量涉及用户隐私的数据(如视频、图像、对话等)。云–边–端一体化架构需要构建隐私数据的安全传输和存储机制,并且限定物理范围。对于可以进行物理操作的机器人,要构建独立的安全监测机制,保证即使机器人系统被远程攻击劫持后也不会造成物理安全损害。
全部0条评论
快来发表一下你的评论吧 !