公司logo

华秋商城

1.8w內容 |  99w+浏览量  |  179粉丝

+关注

--- 产品详情 ---

具有三态输出的增强型产品八路 D 类透明锁存器
Number of channels (#) 8
Technology Family ACT
Supply voltage (Min) (V) 4.5
Supply voltage (Max) (V) 5.5
Input type TTL-Compatible CMOS
Output type 3-State
Clock Frequency (Max) (MHz) 90
IOL (Max) (mA) 24
IOH (Max) (mA) -24
ICC (Max) (uA) 80
Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • 4.5-V to 5.5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 10 ns at 5 V
  • Inputs Are TTL-Voltage Compatible

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

This 8-bit latch features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are D-type transparent latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines in bus-organized systems without need for interface or pullup components.

OE\ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.