Number of channels (#) | 2 |
Technology Family | LVC |
Supply voltage (Min) (V) | 2 |
Supply voltage (Max) (V) | 3.6 |
Input type | Standard CMOS |
Output type | Push-Pull |
Clock Frequency (Max) (MHz) | 100 |
IOL (Max) (mA) | 24 |
IOH (Max) (mA) | -24 |
ICC (Max) (uA) | 10 |
Features | Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs |
- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Maximum tpd of 5.2 ns at 3.3 V
- Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
- Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 1000-V Charged-Device Model (C101)
The SNx4LVC74A devices integrate two positive-edge triggered D-type flip-flops in one convenient device.
The SN54LVC74A is designed for 2.7-V to 3.6-V VCC operation, and the SN74LVC74A is designed for 1.65-V to 3.6-V VCC operation.
A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.
The data I/Os and control inputs are overvoltage tolerant. This feature allows the use of these devices for down-translation in a mixed-voltage environment.